{"title":"菜籽油与乙酸甲酯在t-丁氧化钾/四氢呋喃存在下的酯化反应制备生物燃料","authors":"V. Kampars","doi":"10.5593/SGEM2018/4.1/S17.022","DOIUrl":null,"url":null,"abstract":"Transesterification does not allow to make full conversion of oil to biodiesel because the by-product glycerol cannot be included in the composition of biofuel. Interesterification constitutes a full conversion process with production of triacetin (TA) instead of glycerol, which can be included in the composition of biofuel and allows to increase its yield. Both interesterification and transesterification effectively occur only in presence of catalysts. Results of the investigation of heterogeneous and homogeneous catalysts indicate the superior importance of catalyst solubility in starting reaction mixture. Partial solubility can remarkably lower the activity of homogeneous catalyst and extremely increase that of formally heterogeneous one. The reaction mixture of interesterification reaction is less polar than that of transesterification, and potassium tert-butoxide (t-BuOK) should be more appropriate catalyst for interesterification than sodium methoxide which is used in most cases. The catalytic system t-BuOK/t-BuOH substantially increases the yield of TA and changes the properties of obtained biofuel. Whereas the content of the TA in the interesterification reaction mixture does not achieve the same level from the theoretically predicted as the FAME, the occurrence of side reaction between t-BuOH and TA cannot be excluded. This paper presents a study of the interesterification of rapeseed oil in presence of catalytic system t-BuOK/THF (catalytic system without alcohols) with the aim of establishing the influence of aprotic tetrahydrofuran to the proceeding the reaction, composition of reaction mixtures and their fuel properties. Obtained results show that the absence of alcoholic hydroxyl groups in the catalytic system insufficiently increases the activity of catalytic system but fails to increase the yield of FAME.","PeriodicalId":22116,"journal":{"name":"SWS Journal of EARTH AND PLANETARY SCIENCES","volume":"359 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"BIOFUEL VIA INTERESTERIFICATION OF RAPESEED OIL WITH METHYL ACETATE IN PRESENCE OF POTASSIUM t-BUTOXIDE/THF\",\"authors\":\"V. Kampars\",\"doi\":\"10.5593/SGEM2018/4.1/S17.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transesterification does not allow to make full conversion of oil to biodiesel because the by-product glycerol cannot be included in the composition of biofuel. Interesterification constitutes a full conversion process with production of triacetin (TA) instead of glycerol, which can be included in the composition of biofuel and allows to increase its yield. Both interesterification and transesterification effectively occur only in presence of catalysts. Results of the investigation of heterogeneous and homogeneous catalysts indicate the superior importance of catalyst solubility in starting reaction mixture. Partial solubility can remarkably lower the activity of homogeneous catalyst and extremely increase that of formally heterogeneous one. The reaction mixture of interesterification reaction is less polar than that of transesterification, and potassium tert-butoxide (t-BuOK) should be more appropriate catalyst for interesterification than sodium methoxide which is used in most cases. The catalytic system t-BuOK/t-BuOH substantially increases the yield of TA and changes the properties of obtained biofuel. Whereas the content of the TA in the interesterification reaction mixture does not achieve the same level from the theoretically predicted as the FAME, the occurrence of side reaction between t-BuOH and TA cannot be excluded. This paper presents a study of the interesterification of rapeseed oil in presence of catalytic system t-BuOK/THF (catalytic system without alcohols) with the aim of establishing the influence of aprotic tetrahydrofuran to the proceeding the reaction, composition of reaction mixtures and their fuel properties. Obtained results show that the absence of alcoholic hydroxyl groups in the catalytic system insufficiently increases the activity of catalytic system but fails to increase the yield of FAME.\",\"PeriodicalId\":22116,\"journal\":{\"name\":\"SWS Journal of EARTH AND PLANETARY SCIENCES\",\"volume\":\"359 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SWS Journal of EARTH AND PLANETARY SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5593/SGEM2018/4.1/S17.022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SWS Journal of EARTH AND PLANETARY SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5593/SGEM2018/4.1/S17.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BIOFUEL VIA INTERESTERIFICATION OF RAPESEED OIL WITH METHYL ACETATE IN PRESENCE OF POTASSIUM t-BUTOXIDE/THF
Transesterification does not allow to make full conversion of oil to biodiesel because the by-product glycerol cannot be included in the composition of biofuel. Interesterification constitutes a full conversion process with production of triacetin (TA) instead of glycerol, which can be included in the composition of biofuel and allows to increase its yield. Both interesterification and transesterification effectively occur only in presence of catalysts. Results of the investigation of heterogeneous and homogeneous catalysts indicate the superior importance of catalyst solubility in starting reaction mixture. Partial solubility can remarkably lower the activity of homogeneous catalyst and extremely increase that of formally heterogeneous one. The reaction mixture of interesterification reaction is less polar than that of transesterification, and potassium tert-butoxide (t-BuOK) should be more appropriate catalyst for interesterification than sodium methoxide which is used in most cases. The catalytic system t-BuOK/t-BuOH substantially increases the yield of TA and changes the properties of obtained biofuel. Whereas the content of the TA in the interesterification reaction mixture does not achieve the same level from the theoretically predicted as the FAME, the occurrence of side reaction between t-BuOH and TA cannot be excluded. This paper presents a study of the interesterification of rapeseed oil in presence of catalytic system t-BuOK/THF (catalytic system without alcohols) with the aim of establishing the influence of aprotic tetrahydrofuran to the proceeding the reaction, composition of reaction mixtures and their fuel properties. Obtained results show that the absence of alcoholic hydroxyl groups in the catalytic system insufficiently increases the activity of catalytic system but fails to increase the yield of FAME.