{"title":"多层蜂窝微通道散热器的热性能研究","authors":"Yonglu Liu, Xiaobing Luo, W. Liu, Z. Huang","doi":"10.1109/ICEET.2009.124","DOIUrl":null,"url":null,"abstract":"To develop a high effectiveness, reliable, cost-effective compact heat exchanger is one of the key issues for effective use of thermal energy. By stacking multilayered flat thin rectangular plates with a number of regular honeycomb cells etched inside, the well designed staggered fluid flow channels are formed to enhance heat transfer. For the cooling system with the new type design heat sink, experimental investigations were conducted under different flow rates and input heating powers. The heat power density of 15.7W/cm2 can effectively removed with a substrate temperature rise of 61.9¿ under 2.4W pump power. The results show that the heat sink design provides a good choice for electronic products cooling applications.","PeriodicalId":6348,"journal":{"name":"2009 International Conference on Energy and Environment Technology","volume":"10 1","pages":"487-490"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thermal Performance of the Multilayered Honeycomb Microchannel Heat Sink\",\"authors\":\"Yonglu Liu, Xiaobing Luo, W. Liu, Z. Huang\",\"doi\":\"10.1109/ICEET.2009.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop a high effectiveness, reliable, cost-effective compact heat exchanger is one of the key issues for effective use of thermal energy. By stacking multilayered flat thin rectangular plates with a number of regular honeycomb cells etched inside, the well designed staggered fluid flow channels are formed to enhance heat transfer. For the cooling system with the new type design heat sink, experimental investigations were conducted under different flow rates and input heating powers. The heat power density of 15.7W/cm2 can effectively removed with a substrate temperature rise of 61.9¿ under 2.4W pump power. The results show that the heat sink design provides a good choice for electronic products cooling applications.\",\"PeriodicalId\":6348,\"journal\":{\"name\":\"2009 International Conference on Energy and Environment Technology\",\"volume\":\"10 1\",\"pages\":\"487-490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Energy and Environment Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEET.2009.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Energy and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET.2009.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Performance of the Multilayered Honeycomb Microchannel Heat Sink
To develop a high effectiveness, reliable, cost-effective compact heat exchanger is one of the key issues for effective use of thermal energy. By stacking multilayered flat thin rectangular plates with a number of regular honeycomb cells etched inside, the well designed staggered fluid flow channels are formed to enhance heat transfer. For the cooling system with the new type design heat sink, experimental investigations were conducted under different flow rates and input heating powers. The heat power density of 15.7W/cm2 can effectively removed with a substrate temperature rise of 61.9¿ under 2.4W pump power. The results show that the heat sink design provides a good choice for electronic products cooling applications.