汽车双功能雷达通信系统:概述

Dingyou Ma, Nir Shlezinger, Tianyao Huang, Yimin Liu, Yonina C. Eldar
{"title":"汽车双功能雷达通信系统:概述","authors":"Dingyou Ma, Nir Shlezinger, Tianyao Huang, Yimin Liu, Yonina C. Eldar","doi":"10.1109/SAM48682.2020.9104258","DOIUrl":null,"url":null,"abstract":"Future cars will constantly sense the environment and interchange information with their surrounding in order to successfully choose routes, avoid hazards, and comply with traffic regulations. These vehicles will be equipped with multiple sensors, including automotive radar, as well as wireless communications capabilities. The similarity in hardware and signal processing of automotive radar and wireless communications motivates designing these functionalities in a joint manner. Such dual function radar-communications (DFRC) designs are the focus of a large body of recent works. These joint designs lead to substantial gains in size, cost, power consumption, and performance, making them especially important for vehicular applications, where both the radar and communications operate in similar ranges. This paper reviews a wide variety of existing DFRC strategies and their relevance to automotive systems. We discuss the pros and cons of current methods, mapping them in the context of vehicular application, and present the main challenges and possible research directions.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"37 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automotive Dual-Function Radar Communications Systems: An Overview\",\"authors\":\"Dingyou Ma, Nir Shlezinger, Tianyao Huang, Yimin Liu, Yonina C. Eldar\",\"doi\":\"10.1109/SAM48682.2020.9104258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future cars will constantly sense the environment and interchange information with their surrounding in order to successfully choose routes, avoid hazards, and comply with traffic regulations. These vehicles will be equipped with multiple sensors, including automotive radar, as well as wireless communications capabilities. The similarity in hardware and signal processing of automotive radar and wireless communications motivates designing these functionalities in a joint manner. Such dual function radar-communications (DFRC) designs are the focus of a large body of recent works. These joint designs lead to substantial gains in size, cost, power consumption, and performance, making them especially important for vehicular applications, where both the radar and communications operate in similar ranges. This paper reviews a wide variety of existing DFRC strategies and their relevance to automotive systems. We discuss the pros and cons of current methods, mapping them in the context of vehicular application, and present the main challenges and possible research directions.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"37 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

未来的汽车将不断感知环境,并与周围环境交换信息,以便成功地选择路线,避免危险,并遵守交通规则。这些车辆将配备多个传感器,包括汽车雷达,以及无线通信能力。汽车雷达和无线通信在硬件和信号处理方面的相似性促使我们以一种联合的方式设计这些功能。这种双功能雷达通信(DFRC)设计是最近大量工作的焦点。这些联合设计在尺寸、成本、功耗和性能方面都有很大的提高,这对于雷达和通信在相似范围内工作的车载应用尤为重要。本文回顾了各种现有的DFRC策略及其与汽车系统的相关性。我们讨论了现有方法的优缺点,并在车辆应用的背景下进行了映射,提出了主要挑战和可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automotive Dual-Function Radar Communications Systems: An Overview
Future cars will constantly sense the environment and interchange information with their surrounding in order to successfully choose routes, avoid hazards, and comply with traffic regulations. These vehicles will be equipped with multiple sensors, including automotive radar, as well as wireless communications capabilities. The similarity in hardware and signal processing of automotive radar and wireless communications motivates designing these functionalities in a joint manner. Such dual function radar-communications (DFRC) designs are the focus of a large body of recent works. These joint designs lead to substantial gains in size, cost, power consumption, and performance, making them especially important for vehicular applications, where both the radar and communications operate in similar ranges. This paper reviews a wide variety of existing DFRC strategies and their relevance to automotive systems. We discuss the pros and cons of current methods, mapping them in the context of vehicular application, and present the main challenges and possible research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1