Gabriel Mersy, Vincent Santore, Isaac Rand, Corrine Kleinman, Grant Wilson, Jason Bonsall, Tyler Edwards
{"title":"机器学习算法在美国立法两极分化中的应用比较","authors":"Gabriel Mersy, Vincent Santore, Isaac Rand, Corrine Kleinman, Grant Wilson, Jason Bonsall, Tyler Edwards","doi":"10.1109/IRI49571.2020.00075","DOIUrl":null,"url":null,"abstract":"We present a novel approach to the measurement of American state legislature polarization with an experimental comparison of three different machine learning algorithms. Our approach strictly relies on public data sources and open source software. The results suggest that artificial neural network regression has the best outcome compared to both support vector machine and ordinary least squares regression in the prediction of both state House and state Senate legislature polarization. In addition to the technical outcomes of our study, broader implications are assessed as a means of highlighting the importance of accessible information for the higher purpose of promoting civic responsibility.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"20 1","pages":"451-456"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparison of Machine Learning Algorithms Applied to American Legislature Polarization\",\"authors\":\"Gabriel Mersy, Vincent Santore, Isaac Rand, Corrine Kleinman, Grant Wilson, Jason Bonsall, Tyler Edwards\",\"doi\":\"10.1109/IRI49571.2020.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to the measurement of American state legislature polarization with an experimental comparison of three different machine learning algorithms. Our approach strictly relies on public data sources and open source software. The results suggest that artificial neural network regression has the best outcome compared to both support vector machine and ordinary least squares regression in the prediction of both state House and state Senate legislature polarization. In addition to the technical outcomes of our study, broader implications are assessed as a means of highlighting the importance of accessible information for the higher purpose of promoting civic responsibility.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":\"20 1\",\"pages\":\"451-456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of Machine Learning Algorithms Applied to American Legislature Polarization
We present a novel approach to the measurement of American state legislature polarization with an experimental comparison of three different machine learning algorithms. Our approach strictly relies on public data sources and open source software. The results suggest that artificial neural network regression has the best outcome compared to both support vector machine and ordinary least squares regression in the prediction of both state House and state Senate legislature polarization. In addition to the technical outcomes of our study, broader implications are assessed as a means of highlighting the importance of accessible information for the higher purpose of promoting civic responsibility.