构建ASR系统中Gabor相位对光谱-时间特征提取的影响

Anirban Dutta, G. Prabhakar, C. V. R. Rao
{"title":"构建ASR系统中Gabor相位对光谱-时间特征提取的影响","authors":"Anirban Dutta, G. Prabhakar, C. V. R. Rao","doi":"10.1109/IEMCON51383.2020.9284872","DOIUrl":null,"url":null,"abstract":"Spectro-temporal features have recently showed its usefulness for various speech recognition tasks. Two Dimensional (2-D) Gabor filters are characterized by local patches of spectro-temporal fields which allows them to extract the spectro-temporal information from speech samples. The state of art spectro-temporal features uses the real part of the Gabor filters without any phase offset value. In this work, we analyzed to see whether the Gabor phase have any relevance in the context of spectro-temporal feature extraction in building the acoustic module of a hybrid Automatic Speech Recognition (ASR) system. Different phase offset values are investigated to see if it carries equivalent or complementary information. The experiments are carried out using TIMIT dataset corrupted with different noises at various SNR values. It is found that a Gabor offset phase of 0 degree and 90 degree is equally important in the Gabor filter design for building a robust ASR system.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"25 1","pages":"0341-0345"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Impact of Gabor Phase for Spectro-Temporal Feature Extraction in Building an ASR System\",\"authors\":\"Anirban Dutta, G. Prabhakar, C. V. R. Rao\",\"doi\":\"10.1109/IEMCON51383.2020.9284872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectro-temporal features have recently showed its usefulness for various speech recognition tasks. Two Dimensional (2-D) Gabor filters are characterized by local patches of spectro-temporal fields which allows them to extract the spectro-temporal information from speech samples. The state of art spectro-temporal features uses the real part of the Gabor filters without any phase offset value. In this work, we analyzed to see whether the Gabor phase have any relevance in the context of spectro-temporal feature extraction in building the acoustic module of a hybrid Automatic Speech Recognition (ASR) system. Different phase offset values are investigated to see if it carries equivalent or complementary information. The experiments are carried out using TIMIT dataset corrupted with different noises at various SNR values. It is found that a Gabor offset phase of 0 degree and 90 degree is equally important in the Gabor filter design for building a robust ASR system.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"25 1\",\"pages\":\"0341-0345\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光谱时间特征最近在各种语音识别任务中显示出它的有用性。二维(2-D) Gabor滤波器的特征是光谱-时间场的局部斑块,这使得它们能够从语音样本中提取光谱-时间信息。最先进的光谱-时间特征使用Gabor滤波器的实部,没有任何相位偏移值。在这项工作中,我们分析了Gabor相位在构建混合自动语音识别(ASR)系统的声学模块时是否与光谱-时间特征提取相关。研究了不同的相位偏移值,看看它是否携带等效或互补的信息。实验采用被不同信噪比下不同噪声破坏的TIMIT数据集进行。研究发现,在Gabor滤波器设计中,0度和90度的Gabor偏移相位对于构建鲁棒ASR系统同样重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Impact of Gabor Phase for Spectro-Temporal Feature Extraction in Building an ASR System
Spectro-temporal features have recently showed its usefulness for various speech recognition tasks. Two Dimensional (2-D) Gabor filters are characterized by local patches of spectro-temporal fields which allows them to extract the spectro-temporal information from speech samples. The state of art spectro-temporal features uses the real part of the Gabor filters without any phase offset value. In this work, we analyzed to see whether the Gabor phase have any relevance in the context of spectro-temporal feature extraction in building the acoustic module of a hybrid Automatic Speech Recognition (ASR) system. Different phase offset values are investigated to see if it carries equivalent or complementary information. The experiments are carried out using TIMIT dataset corrupted with different noises at various SNR values. It is found that a Gabor offset phase of 0 degree and 90 degree is equally important in the Gabor filter design for building a robust ASR system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Financial Time Series Stock Price Prediction using Deep Learning Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems A Systematic Literature Review in Causal Association Rules Mining Distance-Based Anomaly Detection for Industrial Surfaces Using Triplet Networks Analysis of Requirements for Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1