气候变化引起的葡萄有机酸谱的改变改变了红葡萄酒酚类物质在受控氧化过程中的稳定性

L. Picariello, A. Rinaldi, F. Martino, F. Petracca, L. Moio, A. Gambuti
{"title":"气候变化引起的葡萄有机酸谱的改变改变了红葡萄酒酚类物质在受控氧化过程中的稳定性","authors":"L. Picariello, A. Rinaldi, F. Martino, F. Petracca, L. Moio, A. Gambuti","doi":"10.5073/VITIS.2019.58.SPECIAL-ISSUE.127-133","DOIUrl":null,"url":null,"abstract":"The effect of the main grape organic acids (tartaric, malic and citric) on the degradative oxidation of red wine was investigated by NMR, HPLC and spectrophotometry. Wines featuring the same pH value of 3.2 with different combinations of organic acids were prepared. Results showed that tartaric acid preserved native anthocyanins from oxidative degradation more than malic and citric acids, with malic acid being the one favoring oxidations the most and, consequently, acetaldehyde production. Wines richer in malic acids showed the highest reactivity towards saliva proteins and a potential higher astringency. Given the wide changes in tartaric/malic acid ratio with climate, these results can help to act in vineyard, as well as in winery, to manage the malic/tartaric acid ratio with the aim of improving red wine longevity.","PeriodicalId":23613,"journal":{"name":"Vitis: Journal of Grapevine Research","volume":"22 1","pages":"127-133"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Modification of the organic acid profile of grapes due to climate changes alters the stability of red wine phenolics during controlled oxidation\",\"authors\":\"L. Picariello, A. Rinaldi, F. Martino, F. Petracca, L. Moio, A. Gambuti\",\"doi\":\"10.5073/VITIS.2019.58.SPECIAL-ISSUE.127-133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of the main grape organic acids (tartaric, malic and citric) on the degradative oxidation of red wine was investigated by NMR, HPLC and spectrophotometry. Wines featuring the same pH value of 3.2 with different combinations of organic acids were prepared. Results showed that tartaric acid preserved native anthocyanins from oxidative degradation more than malic and citric acids, with malic acid being the one favoring oxidations the most and, consequently, acetaldehyde production. Wines richer in malic acids showed the highest reactivity towards saliva proteins and a potential higher astringency. Given the wide changes in tartaric/malic acid ratio with climate, these results can help to act in vineyard, as well as in winery, to manage the malic/tartaric acid ratio with the aim of improving red wine longevity.\",\"PeriodicalId\":23613,\"journal\":{\"name\":\"Vitis: Journal of Grapevine Research\",\"volume\":\"22 1\",\"pages\":\"127-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitis: Journal of Grapevine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5073/VITIS.2019.58.SPECIAL-ISSUE.127-133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitis: Journal of Grapevine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5073/VITIS.2019.58.SPECIAL-ISSUE.127-133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

采用核磁共振、高效液相色谱和分光光度法研究了葡萄中主要有机酸(酒石酸、苹果酸和柠檬酸)对红酒降解氧化的影响。用不同的有机酸组合制备了pH值为3.2的葡萄酒。结果表明,酒石酸比苹果酸和柠檬酸更能保护天然花青素免受氧化降解,苹果酸是最有利于氧化的一种,因此,乙醛的产生。富含苹果酸的葡萄酒对唾液蛋白质表现出最高的反应性,并且可能具有更高的涩味。考虑到酒石酸/苹果酸的比例随着气候的变化而变化,这些结果可以帮助葡萄园和酿酒厂管理苹果酸/酒石酸的比例,以提高红葡萄酒的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification of the organic acid profile of grapes due to climate changes alters the stability of red wine phenolics during controlled oxidation
The effect of the main grape organic acids (tartaric, malic and citric) on the degradative oxidation of red wine was investigated by NMR, HPLC and spectrophotometry. Wines featuring the same pH value of 3.2 with different combinations of organic acids were prepared. Results showed that tartaric acid preserved native anthocyanins from oxidative degradation more than malic and citric acids, with malic acid being the one favoring oxidations the most and, consequently, acetaldehyde production. Wines richer in malic acids showed the highest reactivity towards saliva proteins and a potential higher astringency. Given the wide changes in tartaric/malic acid ratio with climate, these results can help to act in vineyard, as well as in winery, to manage the malic/tartaric acid ratio with the aim of improving red wine longevity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The impact of temperature on 'Pinot Noir' berry and wine quality in a steeply sloping cool climate vineyard in South Australia Three-dimensional approach for identification of red grape cultivars by fingerprint of wine anthocyanins The interplay between hormone signaling and defense gene expression in grapevine genotypes carrying genetic resistance against Plasmopara viticola Physiological changes induced by either pre- or post-veraison deficit irrigation in 'Merlot' vines grafted on two different rootstocks Global transcriptome analysis of heat stress response of grape variety 'Fantasy Seedless' under different irrigation regimens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1