{"title":"修正希尔伯特变换的有效求值注释","authors":"O. Steinbach, Marco Zank","doi":"10.1515/jnma-2019-0099","DOIUrl":null,"url":null,"abstract":"Abstract In this note we consider an efficient data–sparse approximation of a modified Hilbert type transformation as it is used for the space–time finite element discretization of parabolic evolution equations in the anisotropic Sobolev space H1,1/2(Q). The resulting bilinear form of the first-order time derivative is symmetric and positive definite, and similar as the integration by parts formula for the Laplace hypersingular boundary integral operator in 2D. Hence we can apply hierarchical matrices for data–sparse representations and for acceleration of the computations. Numerical results show the efficiency in the approximation of the first-order time derivative. An efficient realisation of the modified Hilbert transformation is a basic ingredient when considering general space–time finite element methods for parabolic evolution equations, and for the stable coupling of finite and boundary element methods in anisotropic Sobolev trace spaces.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A note on the efficient evaluation of a modified Hilbert transformation\",\"authors\":\"O. Steinbach, Marco Zank\",\"doi\":\"10.1515/jnma-2019-0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note we consider an efficient data–sparse approximation of a modified Hilbert type transformation as it is used for the space–time finite element discretization of parabolic evolution equations in the anisotropic Sobolev space H1,1/2(Q). The resulting bilinear form of the first-order time derivative is symmetric and positive definite, and similar as the integration by parts formula for the Laplace hypersingular boundary integral operator in 2D. Hence we can apply hierarchical matrices for data–sparse representations and for acceleration of the computations. Numerical results show the efficiency in the approximation of the first-order time derivative. An efficient realisation of the modified Hilbert transformation is a basic ingredient when considering general space–time finite element methods for parabolic evolution equations, and for the stable coupling of finite and boundary element methods in anisotropic Sobolev trace spaces.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2019-0099\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2019-0099","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A note on the efficient evaluation of a modified Hilbert transformation
Abstract In this note we consider an efficient data–sparse approximation of a modified Hilbert type transformation as it is used for the space–time finite element discretization of parabolic evolution equations in the anisotropic Sobolev space H1,1/2(Q). The resulting bilinear form of the first-order time derivative is symmetric and positive definite, and similar as the integration by parts formula for the Laplace hypersingular boundary integral operator in 2D. Hence we can apply hierarchical matrices for data–sparse representations and for acceleration of the computations. Numerical results show the efficiency in the approximation of the first-order time derivative. An efficient realisation of the modified Hilbert transformation is a basic ingredient when considering general space–time finite element methods for parabolic evolution equations, and for the stable coupling of finite and boundary element methods in anisotropic Sobolev trace spaces.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.