F. McCrackin, E. Passaglia, R. Stromberg, H. L. Steinberg
{"title":"用椭偏法测量超薄薄膜的厚度、折射率及表面光学性质","authors":"F. McCrackin, E. Passaglia, R. Stromberg, H. L. Steinberg","doi":"10.6028/jres.067A.040","DOIUrl":null,"url":null,"abstract":"The use of the ellipsometer for the measurement of the thickness and refractive index of very thin films is reviewed. The Poincaré sphere representation of the state of polarization of light is developed and used to describe the reflection process. Details of the operation of the ellipsometer are examined critically. A computational method is presented by which the thickness of a film of known refractive index on a reflecting substrate of known optical constants may be calculated directly from the ellipsometer readings. A method for computing both the refractive index and thickness of an unknown film is also developed. These methods have been applied to the determination of the thickness of an adsorbed water layer on chromium ferrotype plates and on gold surfaces. In the former case the thickness was 23 to 27 Å, and in the latter was 2 to 5 Å. The measurement of the thickness and refractive index of barium fluoride films evaporated on chromium ferrotype surfaces is used as an illustration of the simultaneous determination of these two quantities.","PeriodicalId":94340,"journal":{"name":"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1963-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"510","resultStr":"{\"title\":\"Measurement of the Thickness and Refractive Index of Very Thin Films and the Optical Properties of Surfaces by Ellipsometry1\",\"authors\":\"F. McCrackin, E. Passaglia, R. Stromberg, H. L. Steinberg\",\"doi\":\"10.6028/jres.067A.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of the ellipsometer for the measurement of the thickness and refractive index of very thin films is reviewed. The Poincaré sphere representation of the state of polarization of light is developed and used to describe the reflection process. Details of the operation of the ellipsometer are examined critically. A computational method is presented by which the thickness of a film of known refractive index on a reflecting substrate of known optical constants may be calculated directly from the ellipsometer readings. A method for computing both the refractive index and thickness of an unknown film is also developed. These methods have been applied to the determination of the thickness of an adsorbed water layer on chromium ferrotype plates and on gold surfaces. In the former case the thickness was 23 to 27 Å, and in the latter was 2 to 5 Å. The measurement of the thickness and refractive index of barium fluoride films evaporated on chromium ferrotype surfaces is used as an illustration of the simultaneous determination of these two quantities.\",\"PeriodicalId\":94340,\"journal\":{\"name\":\"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1963-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"510\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.067A.040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards. Section A, Physics and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.067A.040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurement of the Thickness and Refractive Index of Very Thin Films and the Optical Properties of Surfaces by Ellipsometry1
The use of the ellipsometer for the measurement of the thickness and refractive index of very thin films is reviewed. The Poincaré sphere representation of the state of polarization of light is developed and used to describe the reflection process. Details of the operation of the ellipsometer are examined critically. A computational method is presented by which the thickness of a film of known refractive index on a reflecting substrate of known optical constants may be calculated directly from the ellipsometer readings. A method for computing both the refractive index and thickness of an unknown film is also developed. These methods have been applied to the determination of the thickness of an adsorbed water layer on chromium ferrotype plates and on gold surfaces. In the former case the thickness was 23 to 27 Å, and in the latter was 2 to 5 Å. The measurement of the thickness and refractive index of barium fluoride films evaporated on chromium ferrotype surfaces is used as an illustration of the simultaneous determination of these two quantities.