{"title":"苔藓属苔藓系统发育的分子研究及其分类学意义","authors":"M. Cano, J. A. Jiménez, M. Gallego, J. Guerra","doi":"10.1111/jse.12801","DOIUrl":null,"url":null,"abstract":"Pseudocrossidium is a genus of 21 species belonging to the Pottiaceae with the highest concentration of taxa and morphological variation found in South America. To investigate the evolutionary relationships among the species of Pseudocrossidium and other members of the Pottioideae, molecular phylogenetic reconstructions, using the nuclear ITS1‐5.8S‐ITS2, and the plastid atpB‐rbcL, trnG, and trnL‐F, has been performed because this genus has only been partially tested using molecular markers. Bayesian and maximum likelihood topologies show that the genus, as presently circumscribed, is polyphyletic. Consequently, the circumscription of Pseudocrossidium is amended and numerous taxonomic changes resulting from the molecular, morphological, and nomenclatural studies are proposed. The phylogenetic and morphologically divergent Pseudocrossidium mendozense is renamed as Gertrudiella mendozensis. Pseudocrossidium linearifolium and P. porphyreoneurum are representatives of the new genera Barbulastrum and Helicobarbula, respectively. Pseudocrossidium carinatum and P. santiagense are accommodated in a new genus Austrobarbula. Aloinella, nested in a paraphyletic Pseudocrossidium, is maintained at generic rank, apparently derived from Pseudocrossidium. Barbula integrifolia, B. riograndensis, and Tortula jaffuelii are transferred to Pseudocrossidium. The remaining species of Pseudocrossidium are maintained in this genus, pending further studies. Conflicts of the trees observed could be evidence of interspecific or intergeneric gene flow in various lineages in the Pottioideae.","PeriodicalId":101317,"journal":{"name":"JOURNAL OF SYSTEMATICS AND EVOLUTION","volume":"99 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A molecular approach to the phylogeny of the moss genus Pseudocrossidium (Pottiaceae, Bryopsida) and its taxonomic implications\",\"authors\":\"M. Cano, J. A. Jiménez, M. Gallego, J. Guerra\",\"doi\":\"10.1111/jse.12801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudocrossidium is a genus of 21 species belonging to the Pottiaceae with the highest concentration of taxa and morphological variation found in South America. To investigate the evolutionary relationships among the species of Pseudocrossidium and other members of the Pottioideae, molecular phylogenetic reconstructions, using the nuclear ITS1‐5.8S‐ITS2, and the plastid atpB‐rbcL, trnG, and trnL‐F, has been performed because this genus has only been partially tested using molecular markers. Bayesian and maximum likelihood topologies show that the genus, as presently circumscribed, is polyphyletic. Consequently, the circumscription of Pseudocrossidium is amended and numerous taxonomic changes resulting from the molecular, morphological, and nomenclatural studies are proposed. The phylogenetic and morphologically divergent Pseudocrossidium mendozense is renamed as Gertrudiella mendozensis. Pseudocrossidium linearifolium and P. porphyreoneurum are representatives of the new genera Barbulastrum and Helicobarbula, respectively. Pseudocrossidium carinatum and P. santiagense are accommodated in a new genus Austrobarbula. Aloinella, nested in a paraphyletic Pseudocrossidium, is maintained at generic rank, apparently derived from Pseudocrossidium. Barbula integrifolia, B. riograndensis, and Tortula jaffuelii are transferred to Pseudocrossidium. The remaining species of Pseudocrossidium are maintained in this genus, pending further studies. Conflicts of the trees observed could be evidence of interspecific or intergeneric gene flow in various lineages in the Pottioideae.\",\"PeriodicalId\":101317,\"journal\":{\"name\":\"JOURNAL OF SYSTEMATICS AND EVOLUTION\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF SYSTEMATICS AND EVOLUTION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/jse.12801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SYSTEMATICS AND EVOLUTION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/jse.12801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
拟十字花科(potitiaceae)有21种,是南美洲分布最广、形态变异最广的一属。为了研究Pseudocrossidium和其他Pottioideae成员之间的进化关系,使用核ITS1‐5.8S‐ITS2和质体atpB‐rbcL, trnG和trnL‐F进行了分子系统发育重建,因为该属仅使用分子标记进行了部分测试。贝叶斯和最大似然拓扑学表明,目前所限定的属是多系的。因此,修正了假十字藤的界限,并提出了许多由分子、形态和命名研究引起的分类变化。在系统发育和形态上有差异的门多塞假交叉被重新命名为门多塞Gertrudiella mendozensis。Pseudocrossidium linearifolium和P. porphyreoneurum分别是barbustrum和Helicobarbula新属的代表。钩钩桃和钩钩桃归为一新属。Aloinella,嵌套在副葡萄的Pseudocrossidium中,保持在属级,显然来自Pseudocrossidium。整合Barbula integrfolia, B. riograndensis和Tortula jaffuelii被转移到Pseudocrossidium。在这个属中保留了其余的种,有待进一步的研究。所观察到的树的冲突可能是不同谱系中种间或属间基因流动的证据。
A molecular approach to the phylogeny of the moss genus Pseudocrossidium (Pottiaceae, Bryopsida) and its taxonomic implications
Pseudocrossidium is a genus of 21 species belonging to the Pottiaceae with the highest concentration of taxa and morphological variation found in South America. To investigate the evolutionary relationships among the species of Pseudocrossidium and other members of the Pottioideae, molecular phylogenetic reconstructions, using the nuclear ITS1‐5.8S‐ITS2, and the plastid atpB‐rbcL, trnG, and trnL‐F, has been performed because this genus has only been partially tested using molecular markers. Bayesian and maximum likelihood topologies show that the genus, as presently circumscribed, is polyphyletic. Consequently, the circumscription of Pseudocrossidium is amended and numerous taxonomic changes resulting from the molecular, morphological, and nomenclatural studies are proposed. The phylogenetic and morphologically divergent Pseudocrossidium mendozense is renamed as Gertrudiella mendozensis. Pseudocrossidium linearifolium and P. porphyreoneurum are representatives of the new genera Barbulastrum and Helicobarbula, respectively. Pseudocrossidium carinatum and P. santiagense are accommodated in a new genus Austrobarbula. Aloinella, nested in a paraphyletic Pseudocrossidium, is maintained at generic rank, apparently derived from Pseudocrossidium. Barbula integrifolia, B. riograndensis, and Tortula jaffuelii are transferred to Pseudocrossidium. The remaining species of Pseudocrossidium are maintained in this genus, pending further studies. Conflicts of the trees observed could be evidence of interspecific or intergeneric gene flow in various lineages in the Pottioideae.