层状钙钛矿YBa0.5Sr0.5Co1.5Fe0.5O5+δ阴极作为质子陶瓷燃料电池三离子和电子导体的电化学评价

Inhyeok Cho, Sihyuk Choi
{"title":"层状钙钛矿YBa0.5Sr0.5Co1.5Fe0.5O5+δ阴极作为质子陶瓷燃料电池三离子和电子导体的电化学评价","authors":"Inhyeok Cho, Sihyuk Choi","doi":"10.31613/ceramist.2021.24.4.02","DOIUrl":null,"url":null,"abstract":"Protonic ceramic fuel cells (PCFCs) have receiving huge attention as a promising energy conversion device because of their high conversion efficiency, lack of fuel dilution, and high ionic conductivity at intermediate temperature regime (400 ∼ 600 oC). Although this fuel cell system can effectively solve the main obstacle for the commercialization of conventional solid oxide fuel cells, electrochemical performance is currently limited by the cathodic polarization due to insufficient catalytic activity. To overcome this issue, layered perovskite materials, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ, have been discovered as triple ionic and electronic conductor, which enables to simultaneously conduct H+/O2-/e-. Despite great advantages, there is large gap in the thermal expansion coefficient (TEC) between the cathode and electrolyte. Herein, we developed a new triple conducting cathode material, YBa0.5Sr0.5Co1.5Fe0.5O5+δ (YBSCF) to minimize TEC while maintaining the high electro-catalytic activity with excellent hydration properties. Structural analysis, hydration properties, and electrochemical performances of YBSCF cathode were investigated. In particular, the peak power density of YBSCF cathode based on BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) electrolyte attained 0.702 W cm-2 at 600 oC. Moreover, power output is fairly stable for 300 h without observable degradation by applying a constant voltage of 0.7 V at 600 oC.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"22 10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Evaluation of Layered Perovskite YBa0.5Sr0.5Co1.5Fe0.5O5+δ Cathode as a Triple Ionic and Electronic Conductor for Protonic Ceramic Fuel Cells\",\"authors\":\"Inhyeok Cho, Sihyuk Choi\",\"doi\":\"10.31613/ceramist.2021.24.4.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protonic ceramic fuel cells (PCFCs) have receiving huge attention as a promising energy conversion device because of their high conversion efficiency, lack of fuel dilution, and high ionic conductivity at intermediate temperature regime (400 ∼ 600 oC). Although this fuel cell system can effectively solve the main obstacle for the commercialization of conventional solid oxide fuel cells, electrochemical performance is currently limited by the cathodic polarization due to insufficient catalytic activity. To overcome this issue, layered perovskite materials, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ, have been discovered as triple ionic and electronic conductor, which enables to simultaneously conduct H+/O2-/e-. Despite great advantages, there is large gap in the thermal expansion coefficient (TEC) between the cathode and electrolyte. Herein, we developed a new triple conducting cathode material, YBa0.5Sr0.5Co1.5Fe0.5O5+δ (YBSCF) to minimize TEC while maintaining the high electro-catalytic activity with excellent hydration properties. Structural analysis, hydration properties, and electrochemical performances of YBSCF cathode were investigated. In particular, the peak power density of YBSCF cathode based on BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) electrolyte attained 0.702 W cm-2 at 600 oC. Moreover, power output is fairly stable for 300 h without observable degradation by applying a constant voltage of 0.7 V at 600 oC.\",\"PeriodicalId\":9738,\"journal\":{\"name\":\"Ceramist\",\"volume\":\"22 10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31613/ceramist.2021.24.4.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2021.24.4.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质子陶瓷燃料电池(pcfc)作为一种有前途的能量转换装置,由于其高转换效率,缺乏燃料稀释,以及在中温状态(400 ~ 600℃)下的高离子电导率而受到广泛关注。虽然该燃料电池系统可以有效解决传统固体氧化物燃料电池商业化的主要障碍,但由于催化活性不足,电化学性能目前受到阴极极化的限制。为了克服这一问题,层状钙钛矿材料PrBa0.5Sr0.5Co1.5Fe0.5O5+δ被发现为三离子和电子导体,可以同时导电H+/O2-/e-。尽管有很大的优势,但阴极和电解质之间的热膨胀系数(TEC)差距很大。在此,我们开发了一种新的三导电阴极材料YBa0.5Sr0.5Co1.5Fe0.5O5+δ (YBSCF),以最大限度地减少TEC,同时保持高的电催化活性和优异的水化性能。研究了YBSCF阴极的结构分析、水化性能和电化学性能。其中,基于BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411)电解质的YBSCF阴极在600℃时的峰值功率密度达到0.702 W cm-2。此外,在600℃下施加0.7 V的恒定电压,功率输出在300小时内相当稳定,没有明显的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical Evaluation of Layered Perovskite YBa0.5Sr0.5Co1.5Fe0.5O5+δ Cathode as a Triple Ionic and Electronic Conductor for Protonic Ceramic Fuel Cells
Protonic ceramic fuel cells (PCFCs) have receiving huge attention as a promising energy conversion device because of their high conversion efficiency, lack of fuel dilution, and high ionic conductivity at intermediate temperature regime (400 ∼ 600 oC). Although this fuel cell system can effectively solve the main obstacle for the commercialization of conventional solid oxide fuel cells, electrochemical performance is currently limited by the cathodic polarization due to insufficient catalytic activity. To overcome this issue, layered perovskite materials, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ, have been discovered as triple ionic and electronic conductor, which enables to simultaneously conduct H+/O2-/e-. Despite great advantages, there is large gap in the thermal expansion coefficient (TEC) between the cathode and electrolyte. Herein, we developed a new triple conducting cathode material, YBa0.5Sr0.5Co1.5Fe0.5O5+δ (YBSCF) to minimize TEC while maintaining the high electro-catalytic activity with excellent hydration properties. Structural analysis, hydration properties, and electrochemical performances of YBSCF cathode were investigated. In particular, the peak power density of YBSCF cathode based on BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) electrolyte attained 0.702 W cm-2 at 600 oC. Moreover, power output is fairly stable for 300 h without observable degradation by applying a constant voltage of 0.7 V at 600 oC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perspectives on the development of advanced lithium metal anode Short Review of Flash Sintering: Mechanisms, Microstructures, and Mechanical Properties Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs Resent Progress of LiNi1-x-yCoxMnyO2 for Lithium-ion batteries Recent progress in all-solid-state Li-ion battery anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1