基于自动轮廓似然的碰撞数据统计模型最大似然估计快速计算算法

Issa Cherif Geraldo
{"title":"基于自动轮廓似然的碰撞数据统计模型最大似然估计快速计算算法","authors":"Issa Cherif Geraldo","doi":"10.1155/2022/6974166","DOIUrl":null,"url":null,"abstract":"Numerical computation of maximum likelihood estimates (MLE) is one of the most common problems encountered in applied statistics. Even if there exist many algorithms considered as performing, they can suffer in some cases for one or many of the following criteria: global convergence (capacity of an algorithm to converge to the true unknown solution from all starting guesses), numerical stability (ascent property), implementation feasibility (for example, algorithms requiring matrix inversion cannot be implemented when the involved matrices are not invertible), low computation time, low computational complexity, and capacity to handle high dimensional problems. The reality is that, in practice, no algorithm is perfect, and for each problem, it is necessary to find the most performing of all existing algorithms or even develop new ones. In this paper, we consider the computing of the maximum likelihood estimate of the vector parameter of a statistical model of crash frequencies. We split the parameter vector, and we develop a new estimation algorithm using the profile likelihood principle. We provide an automatic starting guess for which convergence and numerical stability are guaranteed. We study the performance of our new algorithm on simulated data by comparing it to some of the most famous and modern optimization algorithms. The results suggest that our proposed algorithm outperforms these algorithms.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"20 1","pages":"6974166:1-6974166:11"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Automated Profile-Likelihood-Based Algorithm for Fast Computation of the Maximum Likelihood Estimate in a Statistical Model for Crash Data\",\"authors\":\"Issa Cherif Geraldo\",\"doi\":\"10.1155/2022/6974166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical computation of maximum likelihood estimates (MLE) is one of the most common problems encountered in applied statistics. Even if there exist many algorithms considered as performing, they can suffer in some cases for one or many of the following criteria: global convergence (capacity of an algorithm to converge to the true unknown solution from all starting guesses), numerical stability (ascent property), implementation feasibility (for example, algorithms requiring matrix inversion cannot be implemented when the involved matrices are not invertible), low computation time, low computational complexity, and capacity to handle high dimensional problems. The reality is that, in practice, no algorithm is perfect, and for each problem, it is necessary to find the most performing of all existing algorithms or even develop new ones. In this paper, we consider the computing of the maximum likelihood estimate of the vector parameter of a statistical model of crash frequencies. We split the parameter vector, and we develop a new estimation algorithm using the profile likelihood principle. We provide an automatic starting guess for which convergence and numerical stability are guaranteed. We study the performance of our new algorithm on simulated data by comparing it to some of the most famous and modern optimization algorithms. The results suggest that our proposed algorithm outperforms these algorithms.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"20 1\",\"pages\":\"6974166:1-6974166:11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6974166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6974166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最大似然估计的数值计算是应用统计学中最常见的问题之一。即使存在许多被认为正在执行的算法,它们在某些情况下也会受到以下一个或多个标准的影响:全局收敛性(算法从所有开始猜测收敛到真正未知解的能力),数值稳定性(上升特性),实现可行性(例如,当涉及的矩阵不可逆时,无法实现需要矩阵反转的算法),低计算时间,低计算复杂度,以及处理高维问题的能力。现实情况是,在实践中,没有一个算法是完美的,对于每个问题,都有必要在所有现有算法中找到性能最好的,甚至开发新的算法。本文考虑碰撞频率统计模型的向量参数的极大似然估计的计算。我们对参数向量进行了分割,并利用轮廓似然原理提出了一种新的估计算法。我们提供了一个自动的起始猜测,保证了收敛性和数值稳定性。通过与一些最著名和最现代的优化算法进行比较,研究了新算法在模拟数据上的性能。结果表明,我们提出的算法优于这些算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automated Profile-Likelihood-Based Algorithm for Fast Computation of the Maximum Likelihood Estimate in a Statistical Model for Crash Data
Numerical computation of maximum likelihood estimates (MLE) is one of the most common problems encountered in applied statistics. Even if there exist many algorithms considered as performing, they can suffer in some cases for one or many of the following criteria: global convergence (capacity of an algorithm to converge to the true unknown solution from all starting guesses), numerical stability (ascent property), implementation feasibility (for example, algorithms requiring matrix inversion cannot be implemented when the involved matrices are not invertible), low computation time, low computational complexity, and capacity to handle high dimensional problems. The reality is that, in practice, no algorithm is perfect, and for each problem, it is necessary to find the most performing of all existing algorithms or even develop new ones. In this paper, we consider the computing of the maximum likelihood estimate of the vector parameter of a statistical model of crash frequencies. We split the parameter vector, and we develop a new estimation algorithm using the profile likelihood principle. We provide an automatic starting guess for which convergence and numerical stability are guaranteed. We study the performance of our new algorithm on simulated data by comparing it to some of the most famous and modern optimization algorithms. The results suggest that our proposed algorithm outperforms these algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives Application of Improved WOA in Hammerstein Parameter Resolution Problems under Advanced Mathematical Theory Intelligent Optimization Model of Enterprise Financial Account Receivable Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1