Bruna Cruz, P. Eschlwech, Michael Hani, Erwin M. Biebl
{"title":"表征有机导电材料作为射频应用的生态解决方案","authors":"Bruna Cruz, P. Eschlwech, Michael Hani, Erwin M. Biebl","doi":"10.3390/electronicmat3040023","DOIUrl":null,"url":null,"abstract":"The use of nonmetallic conductor materials in RF applications has recently become a highlighted issue when it comes to sustainability in the electronics industry, mainly because of the waste problems associated with heavy metals and the necessity of reducing and managing them. The replacement of metal in functional applications such as in electronics is therefore very important. Among these new materials, organic conductors are of great interest since they are, in general, biocompatible and biodegradable, allowing for the disposal of electronic devices, which reduces the negative environment impact caused by electronics waste. In this work, PEDOT:PSS and Carbon are investigated. Since these materials are available as conducting pastes or inks, the production of conducting patterns by printing techniques such as screen printing is possible, which can make the process less harmful to the environment, since it permits the use of organic substrates such as paper. In order to investigate the feasibility of these materials for RF signal transmission, screen printed PEDOT:PSS and Carbon transmission lines have been designed, fabricated and characterized. Results regarding conductivity, thickness, electric permittivity and S21 parameter are presented and will serve as a foundation for the development of further reaching applications utilizing organic materials.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of Organic Conductive Materials as an Ecological Solution for RF Applications\",\"authors\":\"Bruna Cruz, P. Eschlwech, Michael Hani, Erwin M. Biebl\",\"doi\":\"10.3390/electronicmat3040023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of nonmetallic conductor materials in RF applications has recently become a highlighted issue when it comes to sustainability in the electronics industry, mainly because of the waste problems associated with heavy metals and the necessity of reducing and managing them. The replacement of metal in functional applications such as in electronics is therefore very important. Among these new materials, organic conductors are of great interest since they are, in general, biocompatible and biodegradable, allowing for the disposal of electronic devices, which reduces the negative environment impact caused by electronics waste. In this work, PEDOT:PSS and Carbon are investigated. Since these materials are available as conducting pastes or inks, the production of conducting patterns by printing techniques such as screen printing is possible, which can make the process less harmful to the environment, since it permits the use of organic substrates such as paper. In order to investigate the feasibility of these materials for RF signal transmission, screen printed PEDOT:PSS and Carbon transmission lines have been designed, fabricated and characterized. Results regarding conductivity, thickness, electric permittivity and S21 parameter are presented and will serve as a foundation for the development of further reaching applications utilizing organic materials.\",\"PeriodicalId\":18610,\"journal\":{\"name\":\"Modern Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronicmat3040023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronicmat3040023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Organic Conductive Materials as an Ecological Solution for RF Applications
The use of nonmetallic conductor materials in RF applications has recently become a highlighted issue when it comes to sustainability in the electronics industry, mainly because of the waste problems associated with heavy metals and the necessity of reducing and managing them. The replacement of metal in functional applications such as in electronics is therefore very important. Among these new materials, organic conductors are of great interest since they are, in general, biocompatible and biodegradable, allowing for the disposal of electronic devices, which reduces the negative environment impact caused by electronics waste. In this work, PEDOT:PSS and Carbon are investigated. Since these materials are available as conducting pastes or inks, the production of conducting patterns by printing techniques such as screen printing is possible, which can make the process less harmful to the environment, since it permits the use of organic substrates such as paper. In order to investigate the feasibility of these materials for RF signal transmission, screen printed PEDOT:PSS and Carbon transmission lines have been designed, fabricated and characterized. Results regarding conductivity, thickness, electric permittivity and S21 parameter are presented and will serve as a foundation for the development of further reaching applications utilizing organic materials.