{"title":"多模态足式机器人平台上通用三维ZMP轨迹优化算法的实现","authors":"Joshua Hooks, D. Hong","doi":"10.1109/IROS.2018.8593968","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-functioning light weight robotic system, the Autonomous Legged Personal Helper Robot with Enhanced Dynamics (ALPHRED), capable of both locomtion and manipulation. In addition, we extended a 2D zero moment point (ZMP) trajectory optimization (TO) algorithm to a 3D implementation. As well as adding the acceleration of the center of mass to the TO cost in order to smooth out the motion of the robot during trajectories with support polygons that do not intersect. By implementing this versatile TO algorithm on a multi-modal robotic platform we showed that many different forms of stable locomotion and manipulation were possible including a dynamic 0.7 m/s trot gait.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"25 1","pages":"3777-3782"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Implementation of a Versatile 3D ZMP Trajectory Optimization Algorithm on a Multi-Modal Legged Robotic Platform\",\"authors\":\"Joshua Hooks, D. Hong\",\"doi\":\"10.1109/IROS.2018.8593968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-functioning light weight robotic system, the Autonomous Legged Personal Helper Robot with Enhanced Dynamics (ALPHRED), capable of both locomtion and manipulation. In addition, we extended a 2D zero moment point (ZMP) trajectory optimization (TO) algorithm to a 3D implementation. As well as adding the acceleration of the center of mass to the TO cost in order to smooth out the motion of the robot during trajectories with support polygons that do not intersect. By implementing this versatile TO algorithm on a multi-modal robotic platform we showed that many different forms of stable locomotion and manipulation were possible including a dynamic 0.7 m/s trot gait.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"25 1\",\"pages\":\"3777-3782\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of a Versatile 3D ZMP Trajectory Optimization Algorithm on a Multi-Modal Legged Robotic Platform
This paper presents a multi-functioning light weight robotic system, the Autonomous Legged Personal Helper Robot with Enhanced Dynamics (ALPHRED), capable of both locomtion and manipulation. In addition, we extended a 2D zero moment point (ZMP) trajectory optimization (TO) algorithm to a 3D implementation. As well as adding the acceleration of the center of mass to the TO cost in order to smooth out the motion of the robot during trajectories with support polygons that do not intersect. By implementing this versatile TO algorithm on a multi-modal robotic platform we showed that many different forms of stable locomotion and manipulation were possible including a dynamic 0.7 m/s trot gait.