通过深度学习超越光学成像的标准量子极限

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.082701
Miao Cai, Zhi-Xiang Li, Hao Wu, Ya-Ping Ruan, Lei Tang, Jiangshan Tang, Ming-Yuan Chen, Han Zhang, K. Xia, M. Xiao, Yanqing Lu
{"title":"通过深度学习超越光学成像的标准量子极限","authors":"Miao Cai, Zhi-Xiang Li, Hao Wu, Ya-Ping Ruan, Lei Tang, Jiangshan Tang, Ming-Yuan Chen, Han Zhang, K. Xia, M. Xiao, Yanqing Lu","doi":"10.3788/col202321.082701","DOIUrl":null,"url":null,"abstract":"The sensitivity of optical measurement is ultimately constrained by the shot noise to the standard quantum limit. It has become a common concept that beating this limit requires quantum resources. A deep-learning neural network free of quantum principle has the capability of removing classical noise from images, but it is unclear in reducing quantum noise. In a coincidence-imaging experiment, we show that quantum-resource-free deep learning can be exploited to surpass the standard quantum limit via the photon-number-dependent nonlinear feedback during training. Using an effective classical light with photon flux of about 9 × 10 4 photons per second, our deep-learning-based scheme achieves a 14 dB improvement in signal-to-noise ratio with respect to the standard quantum limit.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"232 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surpassing the standard quantum limit of optical imaging via deep learning\",\"authors\":\"Miao Cai, Zhi-Xiang Li, Hao Wu, Ya-Ping Ruan, Lei Tang, Jiangshan Tang, Ming-Yuan Chen, Han Zhang, K. Xia, M. Xiao, Yanqing Lu\",\"doi\":\"10.3788/col202321.082701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sensitivity of optical measurement is ultimately constrained by the shot noise to the standard quantum limit. It has become a common concept that beating this limit requires quantum resources. A deep-learning neural network free of quantum principle has the capability of removing classical noise from images, but it is unclear in reducing quantum noise. In a coincidence-imaging experiment, we show that quantum-resource-free deep learning can be exploited to surpass the standard quantum limit via the photon-number-dependent nonlinear feedback during training. Using an effective classical light with photon flux of about 9 × 10 4 photons per second, our deep-learning-based scheme achieves a 14 dB improvement in signal-to-noise ratio with respect to the standard quantum limit.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"232 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.082701\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.082701","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

光学测量的灵敏度最终会受到散粒噪声的限制,达到标准量子极限。突破这个极限需要量子资源,这已经成为一个普遍的概念。不考虑量子原理的深度学习神经网络具有去除图像中经典噪声的能力,但在减少量子噪声方面尚不清楚。在一个巧合成像实验中,我们证明了在训练过程中,通过光子数相关的非线性反馈,可以利用无量子资源的深度学习来超越标准量子极限。使用光子通量约为每秒9 × 10 4光子的有效经典光,我们基于深度学习的方案相对于标准量子极限实现了14 dB的信噪比改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surpassing the standard quantum limit of optical imaging via deep learning
The sensitivity of optical measurement is ultimately constrained by the shot noise to the standard quantum limit. It has become a common concept that beating this limit requires quantum resources. A deep-learning neural network free of quantum principle has the capability of removing classical noise from images, but it is unclear in reducing quantum noise. In a coincidence-imaging experiment, we show that quantum-resource-free deep learning can be exploited to surpass the standard quantum limit via the photon-number-dependent nonlinear feedback during training. Using an effective classical light with photon flux of about 9 × 10 4 photons per second, our deep-learning-based scheme achieves a 14 dB improvement in signal-to-noise ratio with respect to the standard quantum limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1