大规模并行多电平快速多极算法在极大规模电磁模拟中的应用综述

Wei-Jia He, Xiao-Wei Huang, Ming-lin Yang, X. Sheng
{"title":"大规模并行多电平快速多极算法在极大规模电磁模拟中的应用综述","authors":"Wei-Jia He, Xiao-Wei Huang, Ming-lin Yang, X. Sheng","doi":"10.2528/pier22011202","DOIUrl":null,"url":null,"abstract":"|Since the (cid:12)rst working multilevel fast multipole algorithm (MLFMA) for electromagnetic simulations was proposed by Chew’s group in 1995, this algorithm has been recognized as one of the most powerful tools for numerical solutions of extremely large electromagnetic problems with complex geometries. It has been parallelized with different strategies to explore the computing power of supercomputers, increasing the size of solvable problems from millions to tens of billions of unknowns, thereby addressing the crucial demand arising from practical applications in a sense. This paper provides a comprehensive review of state-of-the-art parallel approaches of the MLFMA, especially on a newly proposed ternary parallelization scheme and its acceleration on graphics processing unit (GPU) clusters. We discuss and numerically study the advantages of the ternary parallelization scheme and demonstrate its (cid:13)exibility and efficiency.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"242 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MASSIVELY PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR EXTREMELY LARGE-SCALE ELECTROMAGNETIC SIMULATIONS: A REVIEW\",\"authors\":\"Wei-Jia He, Xiao-Wei Huang, Ming-lin Yang, X. Sheng\",\"doi\":\"10.2528/pier22011202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"|Since the (cid:12)rst working multilevel fast multipole algorithm (MLFMA) for electromagnetic simulations was proposed by Chew’s group in 1995, this algorithm has been recognized as one of the most powerful tools for numerical solutions of extremely large electromagnetic problems with complex geometries. It has been parallelized with different strategies to explore the computing power of supercomputers, increasing the size of solvable problems from millions to tens of billions of unknowns, thereby addressing the crucial demand arising from practical applications in a sense. This paper provides a comprehensive review of state-of-the-art parallel approaches of the MLFMA, especially on a newly proposed ternary parallelization scheme and its acceleration on graphics processing unit (GPU) clusters. We discuss and numerically study the advantages of the ternary parallelization scheme and demonstrate its (cid:13)exibility and efficiency.\",\"PeriodicalId\":90705,\"journal\":{\"name\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"volume\":\"242 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pier22011202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier22011202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自(cid:12) 1995年Chew小组首次提出用于电磁模拟的多层快速多极算法(MLFMA)以来,该算法已被公认为具有复杂几何形状的超大型电磁问题数值解的最强大工具之一。它与不同的策略并行,以探索超级计算机的计算能力,将可解决问题的规模从数百万个增加到数百亿个未知数,从而在某种意义上解决了实际应用中产生的关键需求。本文全面回顾了最先进的MLFMA并行方法,特别是新提出的三元并行化方案及其在图形处理单元(GPU)集群上的加速。我们讨论并数值研究了三元并行化方案的优点,并证明了其(cid:13)的灵活性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MASSIVELY PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR EXTREMELY LARGE-SCALE ELECTROMAGNETIC SIMULATIONS: A REVIEW
|Since the (cid:12)rst working multilevel fast multipole algorithm (MLFMA) for electromagnetic simulations was proposed by Chew’s group in 1995, this algorithm has been recognized as one of the most powerful tools for numerical solutions of extremely large electromagnetic problems with complex geometries. It has been parallelized with different strategies to explore the computing power of supercomputers, increasing the size of solvable problems from millions to tens of billions of unknowns, thereby addressing the crucial demand arising from practical applications in a sense. This paper provides a comprehensive review of state-of-the-art parallel approaches of the MLFMA, especially on a newly proposed ternary parallelization scheme and its acceleration on graphics processing unit (GPU) clusters. We discuss and numerically study the advantages of the ternary parallelization scheme and demonstrate its (cid:13)exibility and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Associations between participation and personal factors in community-dwelling adults post-stroke. Transverse Orbital Angular Momentum of Spatiotemporal Optical Vortices Systemically Delivered, Deep-tissue Nanoscopic Light Sources Optical Neural Networks for Holographic Image Recognition (Invited Paper) Exceptional Ring by Non-Hermitian Sonic Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1