机器鱼的新型游泳机构

Sayyed Farideddin Masoomi, Xiaoqi Chen, S. Gutschmidt, M. Sellier
{"title":"机器鱼的新型游泳机构","authors":"Sayyed Farideddin Masoomi, Xiaoqi Chen, S. Gutschmidt, M. Sellier","doi":"10.4018/978-1-4666-4225-6.CH004","DOIUrl":null,"url":null,"abstract":"Efficient cruising, maneuverability, and noiseless performance are the key factors that differentiate fish robots from other types of underwater robots. Accordingly, various types of fish-like robots have been developed such as RoboTuna and Boxybot. However, the existing fish robots are only capable of a specific swimming mode like cruising inspired by tuna or maneuvering inspired by labriforms. However, for accomplishing marine tasks, an underwater robot needs to be able to have different swimming modes. To address this problem, the Mechatronics Group at University of Canterbury is developing a fish robot with novel mechanical design. The novelty of the robot roots in its actuation system, which causes its efficient cruising and its high capabilities for unsteady motion like fast start and fast turning. In this chapter, the existing fish robots are introduced with respect to their mechanical design. Then the proposed design of the fish robot at University of Canterbury is described and compared with the existing fish robots.","PeriodicalId":50067,"journal":{"name":"Journal of Rapid Methods and Automation in Microbiology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Novel Swimming Mechanism for a Robotic Fish\",\"authors\":\"Sayyed Farideddin Masoomi, Xiaoqi Chen, S. Gutschmidt, M. Sellier\",\"doi\":\"10.4018/978-1-4666-4225-6.CH004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient cruising, maneuverability, and noiseless performance are the key factors that differentiate fish robots from other types of underwater robots. Accordingly, various types of fish-like robots have been developed such as RoboTuna and Boxybot. However, the existing fish robots are only capable of a specific swimming mode like cruising inspired by tuna or maneuvering inspired by labriforms. However, for accomplishing marine tasks, an underwater robot needs to be able to have different swimming modes. To address this problem, the Mechatronics Group at University of Canterbury is developing a fish robot with novel mechanical design. The novelty of the robot roots in its actuation system, which causes its efficient cruising and its high capabilities for unsteady motion like fast start and fast turning. In this chapter, the existing fish robots are introduced with respect to their mechanical design. Then the proposed design of the fish robot at University of Canterbury is described and compared with the existing fish robots.\",\"PeriodicalId\":50067,\"journal\":{\"name\":\"Journal of Rapid Methods and Automation in Microbiology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rapid Methods and Automation in Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-4666-4225-6.CH004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rapid Methods and Automation in Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-4666-4225-6.CH004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高效的巡航、机动性和无噪音性能是鱼类机器人区别于其他类型水下机器人的关键因素。因此,开发出了“RoboTuna”、“Boxybot”等各种鱼型机器人。然而,现有的鱼类机器人只能有一种特定的游泳模式,比如受金枪鱼启发的巡航或受唇形启发的机动。然而,为了完成海洋任务,水下机器人需要能够具有不同的游泳模式。为了解决这个问题,坎特伯雷大学的机电一体化小组正在开发一种具有新颖机械设计的鱼类机器人。该机器人的新颖之处在于其驱动系统,使其具有高效的巡航能力和快速启动、快速转弯等非定常运动能力。在本章中,介绍了现有的鱼类机器人的机械设计。然后对坎特伯雷大学提出的鱼类机器人设计进行了描述,并与现有的鱼类机器人进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Swimming Mechanism for a Robotic Fish
Efficient cruising, maneuverability, and noiseless performance are the key factors that differentiate fish robots from other types of underwater robots. Accordingly, various types of fish-like robots have been developed such as RoboTuna and Boxybot. However, the existing fish robots are only capable of a specific swimming mode like cruising inspired by tuna or maneuvering inspired by labriforms. However, for accomplishing marine tasks, an underwater robot needs to be able to have different swimming modes. To address this problem, the Mechatronics Group at University of Canterbury is developing a fish robot with novel mechanical design. The novelty of the robot roots in its actuation system, which causes its efficient cruising and its high capabilities for unsteady motion like fast start and fast turning. In this chapter, the existing fish robots are introduced with respect to their mechanical design. Then the proposed design of the fish robot at University of Canterbury is described and compared with the existing fish robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rapid Methods and Automation in Microbiology
Journal of Rapid Methods and Automation in Microbiology 生物-生物工程与应用微生物
自引率
0.00%
发文量
0
期刊最新文献
Underreporting and Underrepresentation of Race and Ethnicity in Head and Neck Cancer Trials, 2010-2020: A Systematic Review. RobotBASIC Control Architecture Model in Mobile Robots for the Development of Navigation Routes in Structured Environments Robot Double Adaptive Self-Organizing Organisms Using a Bio-Inspired Gene Regulatory Network Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1