鲁棒对应分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-07-27 DOI:10.1111/rssc.12580
Marco Riani, Anthony C. Atkinson, Francesca Torti, Aldo Corbellini
{"title":"鲁棒对应分析","authors":"Marco Riani,&nbsp;Anthony C. Atkinson,&nbsp;Francesca Torti,&nbsp;Aldo Corbellini","doi":"10.1111/rssc.12580","DOIUrl":null,"url":null,"abstract":"<p>Correspondence analysis is a method for the visual display of information from two-way contingency tables. We introduce a robust form of correspondence analysis based on minimum covariance determinant estimation. This leads to the systematic deletion of outlying rows of the table and to plots of greatly increased informativeness. Our examples are trade flows of clothes and consumer evaluations of the perceived properties of cars. The robust method requires that a specified proportion of the data be used in fitting. To accommodate this requirement we provide an algorithm that uses a subset of complete rows and one row partially, both sets of rows being chosen robustly. We prove the convergence of this algorithm.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12580","citationCount":"3","resultStr":"{\"title\":\"Robust correspondence analysis\",\"authors\":\"Marco Riani,&nbsp;Anthony C. Atkinson,&nbsp;Francesca Torti,&nbsp;Aldo Corbellini\",\"doi\":\"10.1111/rssc.12580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Correspondence analysis is a method for the visual display of information from two-way contingency tables. We introduce a robust form of correspondence analysis based on minimum covariance determinant estimation. This leads to the systematic deletion of outlying rows of the table and to plots of greatly increased informativeness. Our examples are trade flows of clothes and consumer evaluations of the perceived properties of cars. The robust method requires that a specified proportion of the data be used in fitting. To accommodate this requirement we provide an algorithm that uses a subset of complete rows and one row partially, both sets of rows being chosen robustly. We prove the convergence of this algorithm.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12580\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12580\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12580","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

对应分析是一种直观显示双向列联表信息的方法。我们介绍了一种基于最小协方差行列式估计的稳健的对应分析形式。这导致系统地删除了表格的外围行,并大大增加了信息量。我们的例子是服装的贸易流动和消费者对汽车感知特性的评估。鲁棒方法要求在拟合中使用一定比例的数据。为了满足这一需求,我们提供了一种算法,该算法使用完整行的子集和部分行的子集,这两组行都被健壮地选择。证明了该算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust correspondence analysis

Correspondence analysis is a method for the visual display of information from two-way contingency tables. We introduce a robust form of correspondence analysis based on minimum covariance determinant estimation. This leads to the systematic deletion of outlying rows of the table and to plots of greatly increased informativeness. Our examples are trade flows of clothes and consumer evaluations of the perceived properties of cars. The robust method requires that a specified proportion of the data be used in fitting. To accommodate this requirement we provide an algorithm that uses a subset of complete rows and one row partially, both sets of rows being chosen robustly. We prove the convergence of this algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1