基于q -学习的移动机器人自适应PID轨迹跟踪算法

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS IET Cybersystems and Robotics Pub Date : 2022-07-27 DOI:10.1109/CYBER55403.2022.9907573
Xiaoliang Fan, Jin Sui, Naifeng He, Bi Zhang, Chunguang Bu, Junbo Yang, Lele Cui
{"title":"基于q -学习的移动机器人自适应PID轨迹跟踪算法","authors":"Xiaoliang Fan, Jin Sui, Naifeng He, Bi Zhang, Chunguang Bu, Junbo Yang, Lele Cui","doi":"10.1109/CYBER55403.2022.9907573","DOIUrl":null,"url":null,"abstract":"Classical PID controllers usually rely on some prior knowledge to manually adjust the gains of the controller and determine them. However, when the mobile robot works in a complex and changeable environment, the fixed PID gains may be difficult to meet the needs of the robot trajectory tracking accuracy. Therefore, this paper proposes a Q-learning-based adaptive PID trajectory tracking algorithm. Firstly, we construct a trajectory tracking Q-PID controller based on the error model of mobile robot. Then, the Q-learning algorithm is used to adaptively adjust the gains of the PID controller online. Meanwhile, the incremental active learning exploration method is used to improve learning efficiency and adaptability of agent. Finally, we use simulation experiments to verify the high performance of our algorithm.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"21 1","pages":"1112-1117"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive PID Trajectory Tracking Algorithm Using Q-Learning for Mobile Robots\",\"authors\":\"Xiaoliang Fan, Jin Sui, Naifeng He, Bi Zhang, Chunguang Bu, Junbo Yang, Lele Cui\",\"doi\":\"10.1109/CYBER55403.2022.9907573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical PID controllers usually rely on some prior knowledge to manually adjust the gains of the controller and determine them. However, when the mobile robot works in a complex and changeable environment, the fixed PID gains may be difficult to meet the needs of the robot trajectory tracking accuracy. Therefore, this paper proposes a Q-learning-based adaptive PID trajectory tracking algorithm. Firstly, we construct a trajectory tracking Q-PID controller based on the error model of mobile robot. Then, the Q-learning algorithm is used to adaptively adjust the gains of the PID controller online. Meanwhile, the incremental active learning exploration method is used to improve learning efficiency and adaptability of agent. Finally, we use simulation experiments to verify the high performance of our algorithm.\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"21 1\",\"pages\":\"1112-1117\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBER55403.2022.9907573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER55403.2022.9907573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传统的PID控制器通常依靠一些先验知识来手动调整控制器的增益并确定它们。然而,当移动机器人工作在复杂多变的环境中时,固定的PID增益可能难以满足机器人轨迹跟踪精度的需要。因此,本文提出了一种基于q学习的自适应PID轨迹跟踪算法。首先,基于移动机器人的误差模型,构造了轨迹跟踪Q-PID控制器。然后,利用q -学习算法对PID控制器的增益进行在线自适应调整。同时,采用渐进式主动学习探索方法,提高智能体的学习效率和适应性。最后,通过仿真实验验证了算法的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive PID Trajectory Tracking Algorithm Using Q-Learning for Mobile Robots
Classical PID controllers usually rely on some prior knowledge to manually adjust the gains of the controller and determine them. However, when the mobile robot works in a complex and changeable environment, the fixed PID gains may be difficult to meet the needs of the robot trajectory tracking accuracy. Therefore, this paper proposes a Q-learning-based adaptive PID trajectory tracking algorithm. Firstly, we construct a trajectory tracking Q-PID controller based on the error model of mobile robot. Then, the Q-learning algorithm is used to adaptively adjust the gains of the PID controller online. Meanwhile, the incremental active learning exploration method is used to improve learning efficiency and adaptability of agent. Finally, we use simulation experiments to verify the high performance of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
期刊最新文献
3D-printed biomimetic and bioinspired soft actuators Correction-enabled reversible data hiding with pixel repetition for high embedding rate and quality preservation Anti-sloshing control: Flatness-based trajectory planning and tracking control with an integrated extended state observer Internal and external disturbances aware motion planning and control for quadrotors Multi-feature fusion and memory-based mobile robot target tracking system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1