{"title":"FP-Growth算法的应用,用于确定Mas批发织物上的消费者购买模式","authors":"Icca Astrina, M. Arifin, Utomo Pujianto","doi":"10.31940/matrix.v9i1.1036","DOIUrl":null,"url":null,"abstract":"In Kediri City there is a very popular woven fabric shop called Medali Mas. It has high sales transaction activity resulting in a large stack of data purchases. This data stack is examined as an information pattern for consumer purchases using data mining association rule techniques and FP-Growth algorithms. The FP-Growth algorithm uses the concept of development tree in searching for frequent item sets. The data used are, 26 types of woven fabric items and 200 transaction data provided that 2 or 3 types of items in 1 transaction. Determined minimum support value of 20 percent and minimum confidence value of 10 percent. It also used Chi-Square testing to find out how much correlation between variables from the results of frequent itemsets that have been calculated. The final result of the consumer purchasing pattern is obtained (m to no) when buying Semi sutra Lusi = grey, Pakan = Blue Flowers, then the consumer might buy Sarong Lusi = black, Pakan= green Lurik and Cotton Lusi= yellow, Pakan = Tosca Bamboo with the results of the correlation between variables at 19.1397274913.","PeriodicalId":31964,"journal":{"name":"Matrix Jurnal Manajemen Teknologi dan Informatika","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen pada Kain Tenun Medali Mas\",\"authors\":\"Icca Astrina, M. Arifin, Utomo Pujianto\",\"doi\":\"10.31940/matrix.v9i1.1036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Kediri City there is a very popular woven fabric shop called Medali Mas. It has high sales transaction activity resulting in a large stack of data purchases. This data stack is examined as an information pattern for consumer purchases using data mining association rule techniques and FP-Growth algorithms. The FP-Growth algorithm uses the concept of development tree in searching for frequent item sets. The data used are, 26 types of woven fabric items and 200 transaction data provided that 2 or 3 types of items in 1 transaction. Determined minimum support value of 20 percent and minimum confidence value of 10 percent. It also used Chi-Square testing to find out how much correlation between variables from the results of frequent itemsets that have been calculated. The final result of the consumer purchasing pattern is obtained (m to no) when buying Semi sutra Lusi = grey, Pakan = Blue Flowers, then the consumer might buy Sarong Lusi = black, Pakan= green Lurik and Cotton Lusi= yellow, Pakan = Tosca Bamboo with the results of the correlation between variables at 19.1397274913.\",\"PeriodicalId\":31964,\"journal\":{\"name\":\"Matrix Jurnal Manajemen Teknologi dan Informatika\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Jurnal Manajemen Teknologi dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31940/matrix.v9i1.1036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Jurnal Manajemen Teknologi dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31940/matrix.v9i1.1036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
摘要
在Kediri市有一家非常受欢迎的织物店,叫做Medali Mas。它有很高的销售交易活动,导致大量的数据购买。使用数据挖掘关联规则技术和FP-Growth算法,将该数据堆栈作为消费者购买的信息模式进行检查。FP-Growth算法使用发展树的概念来搜索频繁项集。所使用的数据为,26种机织物品和200笔交易数据,假设1笔交易中有2种或3种物品。确定的最小支持值为20%,最小置信度为10%。它还使用卡方检验,从已计算的频繁项目集的结果中找出变量之间的相关性有多大。当消费者购买Semi sutra Lusi=灰色,Pakan=蓝色花朵时,得到消费者购买模式的最终结果(m to no),那么消费者可能会购买Sarong Lusi=黑色,Pakan=绿色Lurik和Cotton Lusi=黄色,Pakan= Tosca Bamboo,变量间的相关结果为19.1397274913。
Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen pada Kain Tenun Medali Mas
In Kediri City there is a very popular woven fabric shop called Medali Mas. It has high sales transaction activity resulting in a large stack of data purchases. This data stack is examined as an information pattern for consumer purchases using data mining association rule techniques and FP-Growth algorithms. The FP-Growth algorithm uses the concept of development tree in searching for frequent item sets. The data used are, 26 types of woven fabric items and 200 transaction data provided that 2 or 3 types of items in 1 transaction. Determined minimum support value of 20 percent and minimum confidence value of 10 percent. It also used Chi-Square testing to find out how much correlation between variables from the results of frequent itemsets that have been calculated. The final result of the consumer purchasing pattern is obtained (m to no) when buying Semi sutra Lusi = grey, Pakan = Blue Flowers, then the consumer might buy Sarong Lusi = black, Pakan= green Lurik and Cotton Lusi= yellow, Pakan = Tosca Bamboo with the results of the correlation between variables at 19.1397274913.