{"title":"利用片上驱动保护环抑制混合信号电路中的有源衬底噪声","authors":"W. Winkler, F. Herzel","doi":"10.1109/CICC.2000.852684","DOIUrl":null,"url":null,"abstract":"This paper presents an active substrate noise suppression circuit using a pair of concentric guard rings. The outer guard ring senses the substrate noise, which is inverted and amplified by a SiGe circuit. This on-chip amplifier drives the inner guard ring such that efficient noise cancellation is achieved. A ring oscillator is used to sense the residual substrate noise. The measured noise suppression bandwidth is as high as 400 MHz.","PeriodicalId":20702,"journal":{"name":"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)","volume":"27 1","pages":"357-360"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Active substrate noise suppression in mixed-signal circuits using on-chip driven guard rings\",\"authors\":\"W. Winkler, F. Herzel\",\"doi\":\"10.1109/CICC.2000.852684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an active substrate noise suppression circuit using a pair of concentric guard rings. The outer guard ring senses the substrate noise, which is inverted and amplified by a SiGe circuit. This on-chip amplifier drives the inner guard ring such that efficient noise cancellation is achieved. A ring oscillator is used to sense the residual substrate noise. The measured noise suppression bandwidth is as high as 400 MHz.\",\"PeriodicalId\":20702,\"journal\":{\"name\":\"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)\",\"volume\":\"27 1\",\"pages\":\"357-360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2000.852684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2000.852684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active substrate noise suppression in mixed-signal circuits using on-chip driven guard rings
This paper presents an active substrate noise suppression circuit using a pair of concentric guard rings. The outer guard ring senses the substrate noise, which is inverted and amplified by a SiGe circuit. This on-chip amplifier drives the inner guard ring such that efficient noise cancellation is achieved. A ring oscillator is used to sense the residual substrate noise. The measured noise suppression bandwidth is as high as 400 MHz.