基于大数据主动学习的异构网络数据流分类算法

Li Zhan
{"title":"基于大数据主动学习的异构网络数据流分类算法","authors":"Li Zhan","doi":"10.1155/2022/2996725","DOIUrl":null,"url":null,"abstract":"Data classification is one of the main tasks in the current data mining field, and the existing network data triage algorithms have problems such as too small a proportion of labeled samples, a large amount of noise, and redundant data, which lead to low classification accuracy of data stream implementation. Network embedding can effectively improve these problems, but the network embedding itself has problems such as capturing relational honor and ambiguity. This study proposes a SNN-RODE based LapRLS heterogeneous network data classification algorithm to achieve deep embedding of structure and semantics among nodes by constructing a multitask SNN and selecting dead song datasets to perform mining tasks to train the neural network. Then a semisupervised learning classifier based on Laplace regular least squares regression model is designed to use the relative support difference function as the decision method and optimize the function. The simulation experimental results show that the SNN-RODE-LapRLS algorithm improves the performance by 14%-51% over the mainstream classification algorithms, and the consumption time meets the demand of real-time classification.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"53 1","pages":"2996725:1-2996725:10"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification Algorithm for Heterogeneous Network Data Streams Based on Big Data Active Learning\",\"authors\":\"Li Zhan\",\"doi\":\"10.1155/2022/2996725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data classification is one of the main tasks in the current data mining field, and the existing network data triage algorithms have problems such as too small a proportion of labeled samples, a large amount of noise, and redundant data, which lead to low classification accuracy of data stream implementation. Network embedding can effectively improve these problems, but the network embedding itself has problems such as capturing relational honor and ambiguity. This study proposes a SNN-RODE based LapRLS heterogeneous network data classification algorithm to achieve deep embedding of structure and semantics among nodes by constructing a multitask SNN and selecting dead song datasets to perform mining tasks to train the neural network. Then a semisupervised learning classifier based on Laplace regular least squares regression model is designed to use the relative support difference function as the decision method and optimize the function. The simulation experimental results show that the SNN-RODE-LapRLS algorithm improves the performance by 14%-51% over the mainstream classification algorithms, and the consumption time meets the demand of real-time classification.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"53 1\",\"pages\":\"2996725:1-2996725:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2996725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2996725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据分类是当前数据挖掘领域的主要任务之一,现有的网络数据分类算法存在标记样本比例过小、噪声大、数据冗余等问题,导致数据流实现的分类精度较低。网络嵌入可以有效地改善这些问题,但网络嵌入本身存在捕获关系荣誉和歧义等问题。本研究提出了一种基于SNN- rode的LapRLS异构网络数据分类算法,通过构建多任务SNN,选择死歌数据集执行挖掘任务来训练神经网络,实现节点间结构和语义的深度嵌入。然后设计了一种基于拉普拉斯正则最小二乘回归模型的半监督学习分类器,采用相对支持度差分函数作为决策方法并对函数进行优化。仿真实验结果表明,SNN-RODE-LapRLS算法比主流分类算法性能提高14% ~ 51%,且消耗时间满足实时分类的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification Algorithm for Heterogeneous Network Data Streams Based on Big Data Active Learning
Data classification is one of the main tasks in the current data mining field, and the existing network data triage algorithms have problems such as too small a proportion of labeled samples, a large amount of noise, and redundant data, which lead to low classification accuracy of data stream implementation. Network embedding can effectively improve these problems, but the network embedding itself has problems such as capturing relational honor and ambiguity. This study proposes a SNN-RODE based LapRLS heterogeneous network data classification algorithm to achieve deep embedding of structure and semantics among nodes by constructing a multitask SNN and selecting dead song datasets to perform mining tasks to train the neural network. Then a semisupervised learning classifier based on Laplace regular least squares regression model is designed to use the relative support difference function as the decision method and optimize the function. The simulation experimental results show that the SNN-RODE-LapRLS algorithm improves the performance by 14%-51% over the mainstream classification algorithms, and the consumption time meets the demand of real-time classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives Application of Improved WOA in Hammerstein Parameter Resolution Problems under Advanced Mathematical Theory Intelligent Optimization Model of Enterprise Financial Account Receivable Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1