A Vinogradov , S Nagasaki , V Patlan , K Kitagawa , M Kawazoe
{"title":"等径角挤压5056 Al-Mg合金的疲劳性能","authors":"A Vinogradov , S Nagasaki , V Patlan , K Kitagawa , M Kawazoe","doi":"10.1016/S0965-9773(99)00392-X","DOIUrl":null,"url":null,"abstract":"<div><p><span>The fatigue behaviour of the fine-grain 5056 Al-alloy processed by equal-channel angular pressing (ECAP) is explored. This material exhibits a slightly enhanced fatigue life<span> at low stress amplitudes. However, no improvement in the fatigue limit is observed. Fatigue performance is discussed in terms of fatigue life, crack nucleation and propagation. Structural changes during fatigue are investigated by transmission electron microscopy. It is shown that the fine structure achieved during processing is unstable and tends to relax with cycling, resulting in local recovery of the pre-deformed material. Structure relaxation during fatigue is supposed to provoke notable cyclic softening which is particularly pronounced at higher applied stresses. It is found that the crack growth rate is greater in the fine-grain ECAP material than in its coarse-grain counterpart. The latter is attributed to the roughness-induced </span></span>crack closure and crack deflections which is more significant in conventional alloy. The improvement of fatigue properties at low-cyclic regime is believed to be due to a higher resistance to crack nucleation in the fine-grained material having a larger yield stress value.</p></div>","PeriodicalId":18878,"journal":{"name":"Nanostructured Materials","volume":"11 7","pages":"Pages 925-934"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0965-9773(99)00392-X","citationCount":"139","resultStr":"{\"title\":\"Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing\",\"authors\":\"A Vinogradov , S Nagasaki , V Patlan , K Kitagawa , M Kawazoe\",\"doi\":\"10.1016/S0965-9773(99)00392-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The fatigue behaviour of the fine-grain 5056 Al-alloy processed by equal-channel angular pressing (ECAP) is explored. This material exhibits a slightly enhanced fatigue life<span> at low stress amplitudes. However, no improvement in the fatigue limit is observed. Fatigue performance is discussed in terms of fatigue life, crack nucleation and propagation. Structural changes during fatigue are investigated by transmission electron microscopy. It is shown that the fine structure achieved during processing is unstable and tends to relax with cycling, resulting in local recovery of the pre-deformed material. Structure relaxation during fatigue is supposed to provoke notable cyclic softening which is particularly pronounced at higher applied stresses. It is found that the crack growth rate is greater in the fine-grain ECAP material than in its coarse-grain counterpart. The latter is attributed to the roughness-induced </span></span>crack closure and crack deflections which is more significant in conventional alloy. The improvement of fatigue properties at low-cyclic regime is believed to be due to a higher resistance to crack nucleation in the fine-grained material having a larger yield stress value.</p></div>\",\"PeriodicalId\":18878,\"journal\":{\"name\":\"Nanostructured Materials\",\"volume\":\"11 7\",\"pages\":\"Pages 925-934\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0965-9773(99)00392-X\",\"citationCount\":\"139\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanostructured Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096597739900392X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanostructured Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096597739900392X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing
The fatigue behaviour of the fine-grain 5056 Al-alloy processed by equal-channel angular pressing (ECAP) is explored. This material exhibits a slightly enhanced fatigue life at low stress amplitudes. However, no improvement in the fatigue limit is observed. Fatigue performance is discussed in terms of fatigue life, crack nucleation and propagation. Structural changes during fatigue are investigated by transmission electron microscopy. It is shown that the fine structure achieved during processing is unstable and tends to relax with cycling, resulting in local recovery of the pre-deformed material. Structure relaxation during fatigue is supposed to provoke notable cyclic softening which is particularly pronounced at higher applied stresses. It is found that the crack growth rate is greater in the fine-grain ECAP material than in its coarse-grain counterpart. The latter is attributed to the roughness-induced crack closure and crack deflections which is more significant in conventional alloy. The improvement of fatigue properties at low-cyclic regime is believed to be due to a higher resistance to crack nucleation in the fine-grained material having a larger yield stress value.