基于强化学习的液压系统噪声主动控制

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Dynamic Systems Measurement and Control-Transactions of the Asme Pub Date : 2021-06-01 DOI:10.1115/1.4049556
E. Anderson, B. Steward
{"title":"基于强化学习的液压系统噪声主动控制","authors":"E. Anderson, B. Steward","doi":"10.1115/1.4049556","DOIUrl":null,"url":null,"abstract":"\n Hydraulic pressure ripple in a pump, as a result of converting rotational power to fluid power, continues to be a problem faced when developing hydraulic systems due to the resulting noise generated. In this paper, we present simulation results from leveraging an actor-critic reinforcement learning method as the control method for active noise control in a hydraulic system. The results demonstrate greater than 96%, 81%, and 61% pressure ripple reduction for the first, second, and third harmonics, respectively, in a single operating point test, along with the advantage of feed forward like control for high bandwidth response during dynamic changes in the operating point. It also demonstrates the disadvantage of long convergence times while the controller is effectively learning the optimal control policy. Additionally, this work demonstrates the ancillary benefit of the elimination of the injection of white noise for the purpose of system identification in the current state of the art.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning for Active Noise Control in a Hydraulic System\",\"authors\":\"E. Anderson, B. Steward\",\"doi\":\"10.1115/1.4049556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydraulic pressure ripple in a pump, as a result of converting rotational power to fluid power, continues to be a problem faced when developing hydraulic systems due to the resulting noise generated. In this paper, we present simulation results from leveraging an actor-critic reinforcement learning method as the control method for active noise control in a hydraulic system. The results demonstrate greater than 96%, 81%, and 61% pressure ripple reduction for the first, second, and third harmonics, respectively, in a single operating point test, along with the advantage of feed forward like control for high bandwidth response during dynamic changes in the operating point. It also demonstrates the disadvantage of long convergence times while the controller is effectively learning the optimal control policy. Additionally, this work demonstrates the ancillary benefit of the elimination of the injection of white noise for the purpose of system identification in the current state of the art.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4049556\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049556","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于将旋转动力转换为流体动力,泵中的液压脉动一直是开发液压系统时面临的一个问题,因为由此产生的噪声。在本文中,我们展示了利用行为-批评强化学习方法作为液压系统主动噪声控制方法的仿真结果。结果表明,在单工作点测试中,第一、第二和第三次谐波的压力纹波分别减少了96%、81%和61%,并且在工作点动态变化时具有类似前馈控制的高带宽响应优势。同时也证明了控制器在有效学习最优控制策略时收敛时间较长的缺点。此外,这项工作证明了消除白噪声注入的辅助好处,以便在目前的技术状态下进行系统识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning for Active Noise Control in a Hydraulic System
Hydraulic pressure ripple in a pump, as a result of converting rotational power to fluid power, continues to be a problem faced when developing hydraulic systems due to the resulting noise generated. In this paper, we present simulation results from leveraging an actor-critic reinforcement learning method as the control method for active noise control in a hydraulic system. The results demonstrate greater than 96%, 81%, and 61% pressure ripple reduction for the first, second, and third harmonics, respectively, in a single operating point test, along with the advantage of feed forward like control for high bandwidth response during dynamic changes in the operating point. It also demonstrates the disadvantage of long convergence times while the controller is effectively learning the optimal control policy. Additionally, this work demonstrates the ancillary benefit of the elimination of the injection of white noise for the purpose of system identification in the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
期刊最新文献
Spiking-Free Disturbance Observer-Based Sliding-Mode Control for Mismatched Uncertain System Current Imbalance in Dissimilar Parallel-Connected Batteries and the Fate of Degradation Convergence Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1