Pebax/ peg400 /NH2-MIL125纳米复合膜分离CO2/CH4的合成与实现

Cyrus Fallahi, S. Moradi, R. Behbahani
{"title":"Pebax/ peg400 /NH2-MIL125纳米复合膜分离CO2/CH4的合成与实现","authors":"Cyrus Fallahi, S. Moradi, R. Behbahani","doi":"10.22050/IJOGST.2019.171324.1494","DOIUrl":null,"url":null,"abstract":"In the present study, the permeabilities of CO2 and CH4 in terms of ideal and actual CO2/CH4 selectivity were investigated through the synthesized membranes of poly (ether-block-amide) (Pebax 1657) accompanied with poly (ethylene glycol) (PEG 400) and NH2-MIL125 nanoparticles. NH2-MIL125 nanofillers were added to the blend of PEG 400 and Pebax 1657 at various weight fractions to fabricate polymeric nanocomposite membranes. Several analyses such as the crystalline structure of the synthesized membranes, field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD) were utilized to investigate the cross-sectional and surface morphology of the membranes; the formation of the chemical bonds was identified by Fourier transform infrared (FTIR). This study presents the permeation of both pure and mixed gases ofmethane and carbon dioxide through Pebax 1657, Pebax/PEG blend, and the Pebax/PEG/NH2-MIL125 nanocomposite membranes in a pressure range of 2-8 bar and at ambient temperature. The findings demonstrated that the synthesized nanocomposite membranes had a positive effect on the separation performance in comparison with the membranes made of neat polymer and polymer blends.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"10 1","pages":"106-126"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Synthesis and Implementation of Pebax/PEG 400/NH2-MIL125 Nanocomposite Membranes to Separate CO2/CH4\",\"authors\":\"Cyrus Fallahi, S. Moradi, R. Behbahani\",\"doi\":\"10.22050/IJOGST.2019.171324.1494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the permeabilities of CO2 and CH4 in terms of ideal and actual CO2/CH4 selectivity were investigated through the synthesized membranes of poly (ether-block-amide) (Pebax 1657) accompanied with poly (ethylene glycol) (PEG 400) and NH2-MIL125 nanoparticles. NH2-MIL125 nanofillers were added to the blend of PEG 400 and Pebax 1657 at various weight fractions to fabricate polymeric nanocomposite membranes. Several analyses such as the crystalline structure of the synthesized membranes, field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD) were utilized to investigate the cross-sectional and surface morphology of the membranes; the formation of the chemical bonds was identified by Fourier transform infrared (FTIR). This study presents the permeation of both pure and mixed gases ofmethane and carbon dioxide through Pebax 1657, Pebax/PEG blend, and the Pebax/PEG/NH2-MIL125 nanocomposite membranes in a pressure range of 2-8 bar and at ambient temperature. The findings demonstrated that the synthesized nanocomposite membranes had a positive effect on the separation performance in comparison with the membranes made of neat polymer and polymer blends.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"10 1\",\"pages\":\"106-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2019.171324.1494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2019.171324.1494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究通过合成聚醚-嵌段酰胺(Pebax 1657)与聚乙二醇(PEG 400)和NH2-MIL125纳米颗粒相结合的膜,从理想和实际的CO2/CH4选择性角度考察了CO2和CH4的渗透性。在PEG 400和Pebax 1657的共混物中加入不同质量分数的NH2-MIL125纳米填料,制备聚合物纳米复合膜。利用晶体结构、场发射扫描电镜(FESEM)和x射线衍射分析(XRD)对合成膜的横截面和表面形貌进行了研究;用傅里叶变换红外(FTIR)鉴定了化学键的形成。本研究展示了在2-8 bar的压力范围和环境温度下,纯气体和混合气体甲烷和二氧化碳通过Pebax 1657、Pebax/PEG共混物和Pebax/PEG/NH2-MIL125纳米复合膜的渗透。结果表明,与纯聚合物和共混聚合物制备的膜相比,合成的纳米复合膜对分离性能有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Synthesis and Implementation of Pebax/PEG 400/NH2-MIL125 Nanocomposite Membranes to Separate CO2/CH4
In the present study, the permeabilities of CO2 and CH4 in terms of ideal and actual CO2/CH4 selectivity were investigated through the synthesized membranes of poly (ether-block-amide) (Pebax 1657) accompanied with poly (ethylene glycol) (PEG 400) and NH2-MIL125 nanoparticles. NH2-MIL125 nanofillers were added to the blend of PEG 400 and Pebax 1657 at various weight fractions to fabricate polymeric nanocomposite membranes. Several analyses such as the crystalline structure of the synthesized membranes, field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD) were utilized to investigate the cross-sectional and surface morphology of the membranes; the formation of the chemical bonds was identified by Fourier transform infrared (FTIR). This study presents the permeation of both pure and mixed gases ofmethane and carbon dioxide through Pebax 1657, Pebax/PEG blend, and the Pebax/PEG/NH2-MIL125 nanocomposite membranes in a pressure range of 2-8 bar and at ambient temperature. The findings demonstrated that the synthesized nanocomposite membranes had a positive effect on the separation performance in comparison with the membranes made of neat polymer and polymer blends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relation between asphaltene adsorption on the nanoparticles surface and asphaltene precipitation inhibition during real crude oil natural depletion tests Evaluation of a novel mechanistic approach to predict transport of water and ions through shale Investigation of origin, sedimentary environment and preservation of organic matter: A case study in Garau Formation Detection of heavy bitumen contaminations with using corrected Rock-Eval pyrolysis data Geochemical Investigation of Trace Metals in Crude Oils from Some Producing Oil Fields in Niger Delta, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1