基于小波域隐马尔可夫模型的最大似然纹理分析与分类

G. Fan, X. Xia
{"title":"基于小波域隐马尔可夫模型的最大似然纹理分析与分类","authors":"G. Fan, X. Xia","doi":"10.1109/ACSSC.2000.910649","DOIUrl":null,"url":null,"abstract":"Wavelet-domain hidden Markov models (HMMs), in particular the hidden Markov tree (HMT), have been proposed and applied to image processing, e.g. denoising and segmentation. In this paper texture analysis and classification using wavelet-domain HMMs are studied. In order to achieve more accurate texture characterization, we propose a new tree-structured HMM, called the 2-D HMT-3, where the wavelet coefficients from three subbands are grouped together. Besides the interscale dependencies, the proposed 2-D HMT-3 can also capture the dependencies across the wavelet subbands that are found useful for texture analysis. The experimental results show that the 2-D HMT-3 provides a nearly 20% improvement over the method using wavelet energy signatures, and the overall percentage of correct classification is over 95% upon a set of 55 Brodatz (1966) textures.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"1 1","pages":"921-925 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Maximum likelihood texture analysis and classification using wavelet-domain hidden Markov models\",\"authors\":\"G. Fan, X. Xia\",\"doi\":\"10.1109/ACSSC.2000.910649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet-domain hidden Markov models (HMMs), in particular the hidden Markov tree (HMT), have been proposed and applied to image processing, e.g. denoising and segmentation. In this paper texture analysis and classification using wavelet-domain HMMs are studied. In order to achieve more accurate texture characterization, we propose a new tree-structured HMM, called the 2-D HMT-3, where the wavelet coefficients from three subbands are grouped together. Besides the interscale dependencies, the proposed 2-D HMT-3 can also capture the dependencies across the wavelet subbands that are found useful for texture analysis. The experimental results show that the 2-D HMT-3 provides a nearly 20% improvement over the method using wavelet energy signatures, and the overall percentage of correct classification is over 95% upon a set of 55 Brodatz (1966) textures.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"1 1\",\"pages\":\"921-925 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.910649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

小波域隐马尔可夫模型(hmm),特别是隐马尔可夫树(HMT),已被提出并应用于图像处理,如去噪和分割。本文研究了基于小波域hmm的纹理分析与分类方法。为了获得更准确的纹理表征,我们提出了一种新的树结构HMM,称为二维HMT-3,其中来自三个子带的小波系数被分组在一起。除了尺度间依赖关系外,所提出的二维HMT-3还可以捕获对纹理分析有用的小波子带之间的依赖关系。实验结果表明,二维HMT-3比使用小波能量特征的方法提高了近20%,在55个Brodatz(1966)纹理集上的分类正确率超过95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum likelihood texture analysis and classification using wavelet-domain hidden Markov models
Wavelet-domain hidden Markov models (HMMs), in particular the hidden Markov tree (HMT), have been proposed and applied to image processing, e.g. denoising and segmentation. In this paper texture analysis and classification using wavelet-domain HMMs are studied. In order to achieve more accurate texture characterization, we propose a new tree-structured HMM, called the 2-D HMT-3, where the wavelet coefficients from three subbands are grouped together. Besides the interscale dependencies, the proposed 2-D HMT-3 can also capture the dependencies across the wavelet subbands that are found useful for texture analysis. The experimental results show that the 2-D HMT-3 provides a nearly 20% improvement over the method using wavelet energy signatures, and the overall percentage of correct classification is over 95% upon a set of 55 Brodatz (1966) textures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized lapped biorthogonal transforms using lifting steps Linear unitary precoders for maximum diversity gains with multiple transmit and receive antennas An N2logN back-projection algorithm for SAR image formation A fast constant modulus algorithm for blind equalization A signal separation algorithm for fetal heart-rate estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1