{"title":"热负载下倒装封装中金属间化合物生长的研究","authors":"C. Xu, Z. Zhong, W. Choi","doi":"10.32732/JMA.2019.8.1.1","DOIUrl":null,"url":null,"abstract":" The intermetallic compound layers in solder bumps have the brittle feature and can easily fracture under thermal or mechanical loading. Therefore, the intermetallic compound is an issue for the fracture reliability of the solder bumps. In this work, the intermetallic compound growth before and after high temperature storage tests was investigated. The experiment results revealed that the solder bumps with nickel layers could reduce the intermetallic compound growth rate. The nickel layer, which was added in between Cu and SnAg for top solder bumps, was an important factor controlling the intermetallic compound thickness. It was hard to tell the intermetallic compound thickness at time zero; at the time of 147 hours, the intermetallic compound grew to 3.25 µm; at the time of 294 hours, the intermetallic compound grew to 5.25 µm. However, the solder joints were still in good condition.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of the Intermetallic Compound Growth in Flip-Chip Packages under Thermal Loading\",\"authors\":\"C. Xu, Z. Zhong, W. Choi\",\"doi\":\"10.32732/JMA.2019.8.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" The intermetallic compound layers in solder bumps have the brittle feature and can easily fracture under thermal or mechanical loading. Therefore, the intermetallic compound is an issue for the fracture reliability of the solder bumps. In this work, the intermetallic compound growth before and after high temperature storage tests was investigated. The experiment results revealed that the solder bumps with nickel layers could reduce the intermetallic compound growth rate. The nickel layer, which was added in between Cu and SnAg for top solder bumps, was an important factor controlling the intermetallic compound thickness. It was hard to tell the intermetallic compound thickness at time zero; at the time of 147 hours, the intermetallic compound grew to 3.25 µm; at the time of 294 hours, the intermetallic compound grew to 5.25 µm. However, the solder joints were still in good condition.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32732/JMA.2019.8.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/JMA.2019.8.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of the Intermetallic Compound Growth in Flip-Chip Packages under Thermal Loading
The intermetallic compound layers in solder bumps have the brittle feature and can easily fracture under thermal or mechanical loading. Therefore, the intermetallic compound is an issue for the fracture reliability of the solder bumps. In this work, the intermetallic compound growth before and after high temperature storage tests was investigated. The experiment results revealed that the solder bumps with nickel layers could reduce the intermetallic compound growth rate. The nickel layer, which was added in between Cu and SnAg for top solder bumps, was an important factor controlling the intermetallic compound thickness. It was hard to tell the intermetallic compound thickness at time zero; at the time of 147 hours, the intermetallic compound grew to 3.25 µm; at the time of 294 hours, the intermetallic compound grew to 5.25 µm. However, the solder joints were still in good condition.