{"title":"具有表面张力的自由悬浮薄膜动力学","authors":"Y. Marathe, S. Ramaswamy","doi":"10.1051/JPHYS:0199000510190214300","DOIUrl":null,"url":null,"abstract":"We have studied the hydrodynamics of freely suspended membranes, liquid as well as crystalline, with surface tension. We find that nonlinear coupling to thermally excited undulations gives a singular contribution to the kinetic coefficients of these systems at low frequency and wavenumber. Our results differ in some important respects from those of Katz and Lebedev on this problem, and can be tested in mechanical impedance as well as time-correlation studies.","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"56 1","pages":"2143-2152"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamics of freely suspended films with surface tension\",\"authors\":\"Y. Marathe, S. Ramaswamy\",\"doi\":\"10.1051/JPHYS:0199000510190214300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have studied the hydrodynamics of freely suspended membranes, liquid as well as crystalline, with surface tension. We find that nonlinear coupling to thermally excited undulations gives a singular contribution to the kinetic coefficients of these systems at low frequency and wavenumber. Our results differ in some important respects from those of Katz and Lebedev on this problem, and can be tested in mechanical impedance as well as time-correlation studies.\",\"PeriodicalId\":14747,\"journal\":{\"name\":\"Journal De Physique\",\"volume\":\"56 1\",\"pages\":\"2143-2152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYS:0199000510190214300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510190214300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamics of freely suspended films with surface tension
We have studied the hydrodynamics of freely suspended membranes, liquid as well as crystalline, with surface tension. We find that nonlinear coupling to thermally excited undulations gives a singular contribution to the kinetic coefficients of these systems at low frequency and wavenumber. Our results differ in some important respects from those of Katz and Lebedev on this problem, and can be tested in mechanical impedance as well as time-correlation studies.