{"title":"钽单晶中晶体取向相关断裂行为","authors":"Hojun Lim, P. Noell, J. Carroll","doi":"10.2139/ssrn.3680336","DOIUrl":null,"url":null,"abstract":"Abstract We report crystallographic orientation dependent fracture behavior in tantalum single crystals with the tensile axes oriented close to [100], [110] and [111] directions. Three tantalum single crystals were deformed in quasi-static, uniaxial tension and their fracture surfaces were characterized. To understand different deformation modes and failure mechanisms, crystal plasticity-finite element (CP-FE) simulations were performed. Both experiments and CP-FE simulations showed strong strain localization and shear banding in the ~[100] specimen, little rotation and profuse necking in the ~[110] specimen, and significant crystal rotations associated with shear-dominated behavior in the ~[111] single crystal. In addition, voids were observed in fracture surfaces of ~[100] and ~[111] single crystals while the ~[110] specimen was void-free. The failure processes of these single crystals showed that dislocation boundaries are necessary for void nucleation in pure tantalum. This work demonstrates strong effects of crystallographic orientations in failure behaviors.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Crystallographic Orientation Dependent Fracture Behavior in Tantalum Single Crystals\",\"authors\":\"Hojun Lim, P. Noell, J. Carroll\",\"doi\":\"10.2139/ssrn.3680336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We report crystallographic orientation dependent fracture behavior in tantalum single crystals with the tensile axes oriented close to [100], [110] and [111] directions. Three tantalum single crystals were deformed in quasi-static, uniaxial tension and their fracture surfaces were characterized. To understand different deformation modes and failure mechanisms, crystal plasticity-finite element (CP-FE) simulations were performed. Both experiments and CP-FE simulations showed strong strain localization and shear banding in the ~[100] specimen, little rotation and profuse necking in the ~[110] specimen, and significant crystal rotations associated with shear-dominated behavior in the ~[111] single crystal. In addition, voids were observed in fracture surfaces of ~[100] and ~[111] single crystals while the ~[110] specimen was void-free. The failure processes of these single crystals showed that dislocation boundaries are necessary for void nucleation in pure tantalum. This work demonstrates strong effects of crystallographic orientations in failure behaviors.\",\"PeriodicalId\":18268,\"journal\":{\"name\":\"Materials Engineering eJournal\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3680336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3680336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crystallographic Orientation Dependent Fracture Behavior in Tantalum Single Crystals
Abstract We report crystallographic orientation dependent fracture behavior in tantalum single crystals with the tensile axes oriented close to [100], [110] and [111] directions. Three tantalum single crystals were deformed in quasi-static, uniaxial tension and their fracture surfaces were characterized. To understand different deformation modes and failure mechanisms, crystal plasticity-finite element (CP-FE) simulations were performed. Both experiments and CP-FE simulations showed strong strain localization and shear banding in the ~[100] specimen, little rotation and profuse necking in the ~[110] specimen, and significant crystal rotations associated with shear-dominated behavior in the ~[111] single crystal. In addition, voids were observed in fracture surfaces of ~[100] and ~[111] single crystals while the ~[110] specimen was void-free. The failure processes of these single crystals showed that dislocation boundaries are necessary for void nucleation in pure tantalum. This work demonstrates strong effects of crystallographic orientations in failure behaviors.