虚拟燃气轮机:一种用于二次风系统自动化设计分析的新型流网络求解公式

D. Kulkarni, L. di Mare
{"title":"虚拟燃气轮机:一种用于二次风系统自动化设计分析的新型流网络求解公式","authors":"D. Kulkarni, L. di Mare","doi":"10.1017/aer.2023.70","DOIUrl":null,"url":null,"abstract":"\n The complex and iterative workflow for designing the secondary air system (SAS) of a gas turbine engine still largely depends on human expertise and hence requires long lead times and incurs high design time-cost. This paper proposes an automated methodology to generate the whole-engine SAS flow network model from the engine geometry model and presents a convenient and inter-operable framework of the secondary air system modeller. The SAS modeller transforms the SAS cavities and flow paths into a 1D flow network model composed of nodes and links. The novel, object-oriented pre-processor embedded in the SAS modeller automatically assembles the conservation equations for all flow nodes and the loss correlations for all links. The twin-level, hierarchical SAS solver then solves the conservation equations of mass, momentum and energy supplemented with the correlations in the loss model library. The modelling swiftness, mathematical robustness and numerical stability of the present methodology are demonstrated through the results obtained from IP compressor rotor drum flow network model.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Gas Turbines: A novel flow network solver formulation for the automated design-analysis of secondary air system\",\"authors\":\"D. Kulkarni, L. di Mare\",\"doi\":\"10.1017/aer.2023.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The complex and iterative workflow for designing the secondary air system (SAS) of a gas turbine engine still largely depends on human expertise and hence requires long lead times and incurs high design time-cost. This paper proposes an automated methodology to generate the whole-engine SAS flow network model from the engine geometry model and presents a convenient and inter-operable framework of the secondary air system modeller. The SAS modeller transforms the SAS cavities and flow paths into a 1D flow network model composed of nodes and links. The novel, object-oriented pre-processor embedded in the SAS modeller automatically assembles the conservation equations for all flow nodes and the loss correlations for all links. The twin-level, hierarchical SAS solver then solves the conservation equations of mass, momentum and energy supplemented with the correlations in the loss model library. The modelling swiftness, mathematical robustness and numerical stability of the present methodology are demonstrated through the results obtained from IP compressor rotor drum flow network model.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2023.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

燃气涡轮发动机二次空气系统(SAS)的设计工作流程复杂且反复迭代,在很大程度上仍然依赖于人工专业知识,因此需要较长的交付周期和较高的设计时间成本。本文提出了一种从发动机几何模型自动生成全发动机SAS流网络模型的方法,并提出了一种方便、可互操作的二次风系统建模框架。SAS建模器将SAS空腔和流道转换成由节点和链路组成的一维流网络模型。新型的、面向对象的预处理器嵌入在SAS建模器中,自动组装所有流节点的守恒方程和所有链接的损失相关性。然后用双能级分层SAS求解器求解质量、动量和能量守恒方程,并辅以损失模型库中的相关关系。通过对IP压缩机转子转鼓流动网络模型的仿真,验证了该方法的建模快速性、数学鲁棒性和数值稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual Gas Turbines: A novel flow network solver formulation for the automated design-analysis of secondary air system
The complex and iterative workflow for designing the secondary air system (SAS) of a gas turbine engine still largely depends on human expertise and hence requires long lead times and incurs high design time-cost. This paper proposes an automated methodology to generate the whole-engine SAS flow network model from the engine geometry model and presents a convenient and inter-operable framework of the secondary air system modeller. The SAS modeller transforms the SAS cavities and flow paths into a 1D flow network model composed of nodes and links. The novel, object-oriented pre-processor embedded in the SAS modeller automatically assembles the conservation equations for all flow nodes and the loss correlations for all links. The twin-level, hierarchical SAS solver then solves the conservation equations of mass, momentum and energy supplemented with the correlations in the loss model library. The modelling swiftness, mathematical robustness and numerical stability of the present methodology are demonstrated through the results obtained from IP compressor rotor drum flow network model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spray behaviour of hydro-treated ester fatty acids fuel made from used cooking oil at low injection pressures Visualising flight regimes using self-organising maps A folding wing system for guided ammunitions: mechanism design, manufacturing and real-time results with LQR, LQI, SMC and SOSMC Re-entry vehicle performance analysis under the control of lateral jet Spacecraft attitude control based on generalised dynamic inversion with adaptive neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1