{"title":"基于瞬态特征学习的行星齿轮箱智能故障诊断方法","authors":"Qin Bo, Zixian Li, Yan Qin","doi":"10.5545/sv-jme.2020.6546","DOIUrl":null,"url":null,"abstract":"Sensitive and accurate fault features from the vibration signals of planetary gearboxes are essential for fault diagnosis, in which extreme learning machine (ELM) techniques have been widely adopted. To increase the sensitivity of extracted features fed in ELM, a novel feature extraction method is put forward, which takes advantage of the transient dynamics and the reconstructed high-dimensional data from the original vibration signal. First, based on fast kurtosis analysis, the range of transient dynamics of a vibration signal is located. Next, with the extracted kurtosis information, with variational mode decomposition, a series of intrinsic mode functions are decomposed; the ones that fall into the obtained ranges are selected as transient features, corresponding to maximum kurtosis value. Fed by the transient features, a hierarchical ELM model is well-trained for fault classification. Furthermore, a denoising auto-encoder is used to optimize input weight and threshold of implicit learning node of ELM, satisfying orthogonal condition to realize the layering of its hidden layers. Finally, a numerical case and an experiment are conducted to verify the performance of the proposed method. In comparison with its counterparts, the proposed method has a better classification accuracy in the aiding of transient features.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":"11 1","pages":"385-394"},"PeriodicalIF":1.2000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Transient Feature Learning-Based Intelligent Fault Diagnosis Method for Planetary Gearboxes\",\"authors\":\"Qin Bo, Zixian Li, Yan Qin\",\"doi\":\"10.5545/sv-jme.2020.6546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitive and accurate fault features from the vibration signals of planetary gearboxes are essential for fault diagnosis, in which extreme learning machine (ELM) techniques have been widely adopted. To increase the sensitivity of extracted features fed in ELM, a novel feature extraction method is put forward, which takes advantage of the transient dynamics and the reconstructed high-dimensional data from the original vibration signal. First, based on fast kurtosis analysis, the range of transient dynamics of a vibration signal is located. Next, with the extracted kurtosis information, with variational mode decomposition, a series of intrinsic mode functions are decomposed; the ones that fall into the obtained ranges are selected as transient features, corresponding to maximum kurtosis value. Fed by the transient features, a hierarchical ELM model is well-trained for fault classification. Furthermore, a denoising auto-encoder is used to optimize input weight and threshold of implicit learning node of ELM, satisfying orthogonal condition to realize the layering of its hidden layers. Finally, a numerical case and an experiment are conducted to verify the performance of the proposed method. In comparison with its counterparts, the proposed method has a better classification accuracy in the aiding of transient features.\",\"PeriodicalId\":49472,\"journal\":{\"name\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"volume\":\"11 1\",\"pages\":\"385-394\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2020.6546\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/sv-jme.2020.6546","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Transient Feature Learning-Based Intelligent Fault Diagnosis Method for Planetary Gearboxes
Sensitive and accurate fault features from the vibration signals of planetary gearboxes are essential for fault diagnosis, in which extreme learning machine (ELM) techniques have been widely adopted. To increase the sensitivity of extracted features fed in ELM, a novel feature extraction method is put forward, which takes advantage of the transient dynamics and the reconstructed high-dimensional data from the original vibration signal. First, based on fast kurtosis analysis, the range of transient dynamics of a vibration signal is located. Next, with the extracted kurtosis information, with variational mode decomposition, a series of intrinsic mode functions are decomposed; the ones that fall into the obtained ranges are selected as transient features, corresponding to maximum kurtosis value. Fed by the transient features, a hierarchical ELM model is well-trained for fault classification. Furthermore, a denoising auto-encoder is used to optimize input weight and threshold of implicit learning node of ELM, satisfying orthogonal condition to realize the layering of its hidden layers. Finally, a numerical case and an experiment are conducted to verify the performance of the proposed method. In comparison with its counterparts, the proposed method has a better classification accuracy in the aiding of transient features.
期刊介绍:
The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis.
The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.