B. Singh, S. Sikarwar, K. Pandey, R. Manohar, M. Depriester, D. Singh
{"title":"用于显示和光电应用的碳纳米管混合向列液晶","authors":"B. Singh, S. Sikarwar, K. Pandey, R. Manohar, M. Depriester, D. Singh","doi":"10.3390/electronicmat2040032","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a commercial nematic liquid crystal (LC) mixture namely E7 dispersed with small concentrations of multi-walled carbon nanotubes (MWCNTs). The dielectric and electro-optical characterizations have been carried out in the homogeneously and vertically aligned LC cells. The electro-optical response of LC molecules has been enhanced by 60% after the addition of MWCNTs, which is attributed to the reduced rotational viscosity in the composites. MWCNTs act like barricades for ionic impurities by reducing them up to ∼34.3% within the dispersion limit of 0.05 wt%. The nematic–isotropic phase transition temperature (TNI) of the E7 LC has also been shifted towards the higher temperature, resulting in a more ordered nematic phase. The enhanced birefringence and orientational order parameter in the LC-MWCNTs are attributed to π-π electron stacking between the LC molecules and the MWCNTs. The outlined merits of the LC-MWCNTs composites evince their suitability for ultrafast nematic-based electro-optical devices.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Carbon Nanotubes Blended Nematic Liquid Crystal for Display and Electro-Optical Applications\",\"authors\":\"B. Singh, S. Sikarwar, K. Pandey, R. Manohar, M. Depriester, D. Singh\",\"doi\":\"10.3390/electronicmat2040032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a commercial nematic liquid crystal (LC) mixture namely E7 dispersed with small concentrations of multi-walled carbon nanotubes (MWCNTs). The dielectric and electro-optical characterizations have been carried out in the homogeneously and vertically aligned LC cells. The electro-optical response of LC molecules has been enhanced by 60% after the addition of MWCNTs, which is attributed to the reduced rotational viscosity in the composites. MWCNTs act like barricades for ionic impurities by reducing them up to ∼34.3% within the dispersion limit of 0.05 wt%. The nematic–isotropic phase transition temperature (TNI) of the E7 LC has also been shifted towards the higher temperature, resulting in a more ordered nematic phase. The enhanced birefringence and orientational order parameter in the LC-MWCNTs are attributed to π-π electron stacking between the LC molecules and the MWCNTs. The outlined merits of the LC-MWCNTs composites evince their suitability for ultrafast nematic-based electro-optical devices.\",\"PeriodicalId\":18610,\"journal\":{\"name\":\"Modern Electronic Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronicmat2040032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronicmat2040032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon Nanotubes Blended Nematic Liquid Crystal for Display and Electro-Optical Applications
In this paper, we investigate a commercial nematic liquid crystal (LC) mixture namely E7 dispersed with small concentrations of multi-walled carbon nanotubes (MWCNTs). The dielectric and electro-optical characterizations have been carried out in the homogeneously and vertically aligned LC cells. The electro-optical response of LC molecules has been enhanced by 60% after the addition of MWCNTs, which is attributed to the reduced rotational viscosity in the composites. MWCNTs act like barricades for ionic impurities by reducing them up to ∼34.3% within the dispersion limit of 0.05 wt%. The nematic–isotropic phase transition temperature (TNI) of the E7 LC has also been shifted towards the higher temperature, resulting in a more ordered nematic phase. The enhanced birefringence and orientational order parameter in the LC-MWCNTs are attributed to π-π electron stacking between the LC molecules and the MWCNTs. The outlined merits of the LC-MWCNTs composites evince their suitability for ultrafast nematic-based electro-optical devices.