影响光伏装置的最小污染水平的测定

P. Burton, B. King
{"title":"影响光伏装置的最小污染水平的测定","authors":"P. Burton, B. King","doi":"10.1109/PVSC.2014.6925529","DOIUrl":null,"url":null,"abstract":"Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence, but remain difficult to quantify. In order to more accurately describe the specific effects of sparse soil films on PV systems, we have expanded upon an earlier technique to measure the optical losses due to an artificially applied obscurant film. A synthetic soil analogue consisting of AZ road dust and soot in acetonitrile carrier solvent was sprayed onto glass coupons at very brief intervals with a high volume, low pressure pneumatic sprayer. Light transmission through the grime film was evaluated using a QE test stand and UV/vis spectroscopy. A 0.1 g/m2 grime loading was determined to be the limit of mass measurement sensitivity, which is similar to some reports of daily soil accumulation. Predictable, linear decreases in transmission were observed for samples with a mass loading between 0.1 and 0.5 g/m2. Reflectance measurements provided the best means of easily distinguishing this sample from a reference.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"22 1","pages":"0193-0197"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Determination of a minimum soiling level to affect photovoltaic devices\",\"authors\":\"P. Burton, B. King\",\"doi\":\"10.1109/PVSC.2014.6925529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence, but remain difficult to quantify. In order to more accurately describe the specific effects of sparse soil films on PV systems, we have expanded upon an earlier technique to measure the optical losses due to an artificially applied obscurant film. A synthetic soil analogue consisting of AZ road dust and soot in acetonitrile carrier solvent was sprayed onto glass coupons at very brief intervals with a high volume, low pressure pneumatic sprayer. Light transmission through the grime film was evaluated using a QE test stand and UV/vis spectroscopy. A 0.1 g/m2 grime loading was determined to be the limit of mass measurement sensitivity, which is similar to some reports of daily soil accumulation. Predictable, linear decreases in transmission were observed for samples with a mass loading between 0.1 and 0.5 g/m2. Reflectance measurements provided the best means of easily distinguishing this sample from a reference.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"22 1\",\"pages\":\"0193-0197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于难以量化长时间内的微小变化,光伏(PV)组件上的土壤积累对长期性能预测和寿命估计提出了挑战。土壤的低质量载荷是常见的,但仍然难以量化。为了更准确地描述稀疏土壤膜对光伏系统的具体影响,我们扩展了早期的技术,以测量由于人工应用的遮挡膜造成的光学损失。采用高容量、低压气动喷雾器,在极短的时间间隔内将AZ道路粉尘和烟灰在乙腈载体溶剂中喷射到玻璃板上。利用QE试验台和紫外/可见光谱法评估了通过污垢膜的光透射率。0.1 g/m2的污垢负荷被确定为质量测量灵敏度的极限,这与一些每日土壤堆积的报道相似。对于质量负荷在0.1和0.5 g/m2之间的样品,透射率可预测地线性下降。反射率测量提供了很容易地将样品与参考样品区分开来的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of a minimum soiling level to affect photovoltaic devices
Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence, but remain difficult to quantify. In order to more accurately describe the specific effects of sparse soil films on PV systems, we have expanded upon an earlier technique to measure the optical losses due to an artificially applied obscurant film. A synthetic soil analogue consisting of AZ road dust and soot in acetonitrile carrier solvent was sprayed onto glass coupons at very brief intervals with a high volume, low pressure pneumatic sprayer. Light transmission through the grime film was evaluated using a QE test stand and UV/vis spectroscopy. A 0.1 g/m2 grime loading was determined to be the limit of mass measurement sensitivity, which is similar to some reports of daily soil accumulation. Predictable, linear decreases in transmission were observed for samples with a mass loading between 0.1 and 0.5 g/m2. Reflectance measurements provided the best means of easily distinguishing this sample from a reference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid characterization of extended defects in III–V/Si by electron channeling contrast imaging Transport modeling of InGaN/GaN multiple quantum well solar cells Integration of PV into the energy system: Challenges and measures for generation and load management Determination of a minimum soiling level to affect photovoltaic devices Optical emission spectroscopy of High Power Impulse Magnetron Sputtering (HiPIMS) of CIGS thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1