Daiqian Ma, Renjie Wan, Boxin Shi, A. Kot, Ling-yu Duan
{"title":"学会共同产生和分离反射","authors":"Daiqian Ma, Renjie Wan, Boxin Shi, A. Kot, Ling-yu Duan","doi":"10.1109/ICCV.2019.00253","DOIUrl":null,"url":null,"abstract":"Existing learning-based single image reflection removal methods using paired training data have fundamental limitations about the generalization capability on real-world reflections due to the limited variations in training pairs. In this work, we propose to jointly generate and separate reflections within a weakly-supervised learning framework, aiming to model the reflection image formation more comprehensively with abundant unpaired supervision. By imposing the adversarial losses and combinable mapping mechanism in a multi-task structure, the proposed framework elegantly integrates the two separate stages of reflection generation and separation into a unified model. The gradient constraint is incorporated into the concurrent training process of the multi-task learning as well. In particular, we built up an unpaired reflection dataset with 4,027 images, which is useful for facilitating the weakly-supervised learning of reflection removal model. Extensive experiments on a public benchmark dataset show that our framework performs favorably against state-of-the-art methods and consistently produces visually appealing results.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"453 1","pages":"2444-2452"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Learning to Jointly Generate and Separate Reflections\",\"authors\":\"Daiqian Ma, Renjie Wan, Boxin Shi, A. Kot, Ling-yu Duan\",\"doi\":\"10.1109/ICCV.2019.00253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing learning-based single image reflection removal methods using paired training data have fundamental limitations about the generalization capability on real-world reflections due to the limited variations in training pairs. In this work, we propose to jointly generate and separate reflections within a weakly-supervised learning framework, aiming to model the reflection image formation more comprehensively with abundant unpaired supervision. By imposing the adversarial losses and combinable mapping mechanism in a multi-task structure, the proposed framework elegantly integrates the two separate stages of reflection generation and separation into a unified model. The gradient constraint is incorporated into the concurrent training process of the multi-task learning as well. In particular, we built up an unpaired reflection dataset with 4,027 images, which is useful for facilitating the weakly-supervised learning of reflection removal model. Extensive experiments on a public benchmark dataset show that our framework performs favorably against state-of-the-art methods and consistently produces visually appealing results.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"453 1\",\"pages\":\"2444-2452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to Jointly Generate and Separate Reflections
Existing learning-based single image reflection removal methods using paired training data have fundamental limitations about the generalization capability on real-world reflections due to the limited variations in training pairs. In this work, we propose to jointly generate and separate reflections within a weakly-supervised learning framework, aiming to model the reflection image formation more comprehensively with abundant unpaired supervision. By imposing the adversarial losses and combinable mapping mechanism in a multi-task structure, the proposed framework elegantly integrates the two separate stages of reflection generation and separation into a unified model. The gradient constraint is incorporated into the concurrent training process of the multi-task learning as well. In particular, we built up an unpaired reflection dataset with 4,027 images, which is useful for facilitating the weakly-supervised learning of reflection removal model. Extensive experiments on a public benchmark dataset show that our framework performs favorably against state-of-the-art methods and consistently produces visually appealing results.