利用多传感器数据融合处理数据不确定性和不一致性

Waleed A. Abdulhafiz, A. Khamis
{"title":"利用多传感器数据融合处理数据不确定性和不一致性","authors":"Waleed A. Abdulhafiz, A. Khamis","doi":"10.1155/2013/241260","DOIUrl":null,"url":null,"abstract":"Data provided by sensors is always subjected to some level of uncertainty and inconsistency. Multisensor data fusion algorithms reduce the uncertainty by combining data from several sources. However, if these several sources provide inconsistent data, catastrophic fusion may occur where the performance of multisensor data fusion is significantly lower than the performance of each of the individual sensor. This paper presents an approach tomultisensor data fusion in order to decrease data uncertainty with ability to identify and handle inconsistency. The proposed approach relies on combining a modified Bayesian fusion algorithm with Kalman filtering. Three different approaches, namely, prefiltering, postfiltering and pre-postfiltering are described based on how filtering is applied to the sensor data, to the fused data or both. A case study to find the position of a mobile robot by estimating its x and y coordinates using four sensors is presented. The simulations show that combining fusion with filtering helps in handling the problem of uncertainty and inconsistency of the data.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":"29 17 1","pages":"241260:1-241260:11"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Handling Data Uncertainty and Inconsistency Using Multisensor Data Fusion\",\"authors\":\"Waleed A. Abdulhafiz, A. Khamis\",\"doi\":\"10.1155/2013/241260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data provided by sensors is always subjected to some level of uncertainty and inconsistency. Multisensor data fusion algorithms reduce the uncertainty by combining data from several sources. However, if these several sources provide inconsistent data, catastrophic fusion may occur where the performance of multisensor data fusion is significantly lower than the performance of each of the individual sensor. This paper presents an approach tomultisensor data fusion in order to decrease data uncertainty with ability to identify and handle inconsistency. The proposed approach relies on combining a modified Bayesian fusion algorithm with Kalman filtering. Three different approaches, namely, prefiltering, postfiltering and pre-postfiltering are described based on how filtering is applied to the sensor data, to the fused data or both. A case study to find the position of a mobile robot by estimating its x and y coordinates using four sensors is presented. The simulations show that combining fusion with filtering helps in handling the problem of uncertainty and inconsistency of the data.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":\"29 17 1\",\"pages\":\"241260:1-241260:11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/241260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/241260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

传感器提供的数据总是存在一定程度的不确定性和不一致性。多传感器数据融合算法通过结合多个来源的数据来减少不确定性。然而,如果这几个数据源提供的数据不一致,则可能发生灾难性融合,其中多传感器数据融合的性能明显低于每个单个传感器的性能。本文提出了一种多传感器数据融合方法,通过识别和处理不一致的能力来降低数据的不确定性。该方法将改进的贝叶斯融合算法与卡尔曼滤波相结合。根据滤波如何应用于传感器数据、融合数据或两者,描述了三种不同的方法,即预滤波、后滤波和预后滤波。给出了一个使用四个传感器通过估计移动机器人的x和y坐标来确定其位置的实例研究。仿真结果表明,融合与滤波相结合有助于处理数据的不确定性和不一致性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handling Data Uncertainty and Inconsistency Using Multisensor Data Fusion
Data provided by sensors is always subjected to some level of uncertainty and inconsistency. Multisensor data fusion algorithms reduce the uncertainty by combining data from several sources. However, if these several sources provide inconsistent data, catastrophic fusion may occur where the performance of multisensor data fusion is significantly lower than the performance of each of the individual sensor. This paper presents an approach tomultisensor data fusion in order to decrease data uncertainty with ability to identify and handle inconsistency. The proposed approach relies on combining a modified Bayesian fusion algorithm with Kalman filtering. Three different approaches, namely, prefiltering, postfiltering and pre-postfiltering are described based on how filtering is applied to the sensor data, to the fused data or both. A case study to find the position of a mobile robot by estimating its x and y coordinates using four sensors is presented. The simulations show that combining fusion with filtering helps in handling the problem of uncertainty and inconsistency of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iWordNet: A New Approach to Cognitive Science and Artificial Intelligence Natural Language Processing and Fuzzy Tools for Business Processes in a Geolocation Context Method for Solving LASSO Problem Based on Multidimensional Weight Selection and Configuration of Sorption Isotherm Models in Soils Using Artificial Bees Guided by the Particle Swarm Weighted Constraint Satisfaction for Smart Home Automation and Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1