采用模块化方法优化非常规油田自动化试井

S. Baaren, Ryan Malone
{"title":"采用模块化方法优化非常规油田自动化试井","authors":"S. Baaren, Ryan Malone","doi":"10.2118/197826-ms","DOIUrl":null,"url":null,"abstract":"\n Well testing equipment for unconventional onshore applications generally comprises a sand removal unit (Desander), a dual choke manifold, a test separator with metering, various types of tanks for temporary storage and in some cases a flare. This equipment is typically interconnected through high pressure temporary flowline generally referred to as flow-iron, which is made up from modular components that are joined by quick connect hammer unions. Installation of the equipment and the well testing itself is labor intensive. Personnel is on location 24 hours a day, working on or near high pressure piping and climbing onto open top tanks during well testing. This results in significant labor costs and exposes personnel to numerous health and safety risks.\n This paper starts with introducing a modularized Automated Well Testing system (AWT) which has been developed to rig-in and out faster, minimize personnel exposure to health and safety risks, minimize transport cost, reduce footprint and eliminate greenhouse gas emissions to operate the unit. A first unit has been built and applied at various shale plays across North America during the past two years. Learnings and conclusions from these applications are summarized and used to evaluate the design.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"455 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Automated Well Testing for the Unconventional Oil Field using a Modular Approach\",\"authors\":\"S. Baaren, Ryan Malone\",\"doi\":\"10.2118/197826-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Well testing equipment for unconventional onshore applications generally comprises a sand removal unit (Desander), a dual choke manifold, a test separator with metering, various types of tanks for temporary storage and in some cases a flare. This equipment is typically interconnected through high pressure temporary flowline generally referred to as flow-iron, which is made up from modular components that are joined by quick connect hammer unions. Installation of the equipment and the well testing itself is labor intensive. Personnel is on location 24 hours a day, working on or near high pressure piping and climbing onto open top tanks during well testing. This results in significant labor costs and exposes personnel to numerous health and safety risks.\\n This paper starts with introducing a modularized Automated Well Testing system (AWT) which has been developed to rig-in and out faster, minimize personnel exposure to health and safety risks, minimize transport cost, reduce footprint and eliminate greenhouse gas emissions to operate the unit. A first unit has been built and applied at various shale plays across North America during the past two years. Learnings and conclusions from these applications are summarized and used to evaluate the design.\",\"PeriodicalId\":11328,\"journal\":{\"name\":\"Day 4 Thu, November 14, 2019\",\"volume\":\"455 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197826-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197826-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非常规陆上应用的测试设备通常包括除砂器、双节流管汇、带计量的测试分离器、各种类型的临时储罐,在某些情况下还包括火炬。该设备通常通过高压临时管线(通常称为流铁管线)相互连接,流铁管线由模块化组件组成,通过快速连接锤式接头连接。设备的安装和试井本身都是劳动密集型的。工作人员每天24小时都在现场,在高压管道上或附近工作,并在试井期间爬上打开的顶部储罐。这导致了巨大的劳动力成本,并使人员面临许多健康和安全风险。本文首先介绍了一种模块化的自动化井测试系统(AWT),该系统的开发速度更快,可以最大限度地降低人员的健康和安全风险,最大限度地降低运输成本,减少占地面积,消除温室气体排放。在过去的两年中,第一台设备已经建成并应用于北美的多个页岩区。总结了这些应用程序的学习和结论,并用于评估设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Automated Well Testing for the Unconventional Oil Field using a Modular Approach
Well testing equipment for unconventional onshore applications generally comprises a sand removal unit (Desander), a dual choke manifold, a test separator with metering, various types of tanks for temporary storage and in some cases a flare. This equipment is typically interconnected through high pressure temporary flowline generally referred to as flow-iron, which is made up from modular components that are joined by quick connect hammer unions. Installation of the equipment and the well testing itself is labor intensive. Personnel is on location 24 hours a day, working on or near high pressure piping and climbing onto open top tanks during well testing. This results in significant labor costs and exposes personnel to numerous health and safety risks. This paper starts with introducing a modularized Automated Well Testing system (AWT) which has been developed to rig-in and out faster, minimize personnel exposure to health and safety risks, minimize transport cost, reduce footprint and eliminate greenhouse gas emissions to operate the unit. A first unit has been built and applied at various shale plays across North America during the past two years. Learnings and conclusions from these applications are summarized and used to evaluate the design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of bag-of-features (BoF) technique for weed management in sugarcane production Spraying deposits using different nozzles and application volumes for pest management of cotton at reproductive stage Opioid Prescription in Switzerland: Appropriate Comedication use in Cancer and Noncancer Pain Co-Development Aspects of Super Giant Reservoirs With Condensate-Rich Gas Cap Healing Total Losses and Establishing Well Integrity with Engineered Fiber-Based Lost Circulation Control Spacer During Primary Cementing in UAE Offshore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1