{"title":"利用变长算法提高半符号分析精度","authors":"J. Dobes, J. Míchal","doi":"10.1109/ICECS.2004.1399699","DOIUrl":null,"url":null,"abstract":"An optimal pivoting strategy for the reduction algorithm transforming the general eigenvalue problem to the standard one is presented for both full- and sparse-matrix techniques. The method increases the precision of the semisymbolic analyses, especially for large-scale circuits. The accuracy of the algorithms is furthermore increased using longer numerical data. First, a long double precision sparse algorithm is compared with the double precision sparse and full-matrix ones. Further, the application of a suitable multiple-precision arithmetic library is evaluated. Finally, the use of longer numerical data to eliminate possible imprecision of the multiple eigenvalues is evaluated.","PeriodicalId":38467,"journal":{"name":"Giornale di Storia Costituzionale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the semisymbolic analysis precision using the variable-length arithmetic\",\"authors\":\"J. Dobes, J. Míchal\",\"doi\":\"10.1109/ICECS.2004.1399699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimal pivoting strategy for the reduction algorithm transforming the general eigenvalue problem to the standard one is presented for both full- and sparse-matrix techniques. The method increases the precision of the semisymbolic analyses, especially for large-scale circuits. The accuracy of the algorithms is furthermore increased using longer numerical data. First, a long double precision sparse algorithm is compared with the double precision sparse and full-matrix ones. Further, the application of a suitable multiple-precision arithmetic library is evaluated. Finally, the use of longer numerical data to eliminate possible imprecision of the multiple eigenvalues is evaluated.\",\"PeriodicalId\":38467,\"journal\":{\"name\":\"Giornale di Storia Costituzionale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Giornale di Storia Costituzionale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2004.1399699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giornale di Storia Costituzionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2004.1399699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
Enhancement of the semisymbolic analysis precision using the variable-length arithmetic
An optimal pivoting strategy for the reduction algorithm transforming the general eigenvalue problem to the standard one is presented for both full- and sparse-matrix techniques. The method increases the precision of the semisymbolic analyses, especially for large-scale circuits. The accuracy of the algorithms is furthermore increased using longer numerical data. First, a long double precision sparse algorithm is compared with the double precision sparse and full-matrix ones. Further, the application of a suitable multiple-precision arithmetic library is evaluated. Finally, the use of longer numerical data to eliminate possible imprecision of the multiple eigenvalues is evaluated.