基于搜索的服务质量软件工程概率模型综合(T)

Simos Gerasimou, Giordano Tamburrelli, R. Calinescu
{"title":"基于搜索的服务质量软件工程概率模型综合(T)","authors":"Simos Gerasimou, Giordano Tamburrelli, R. Calinescu","doi":"10.1109/ASE.2015.22","DOIUrl":null,"url":null,"abstract":"The formal verification of finite-state probabilistic models supports the engineering of software with strict quality-of-service (QoS) requirements. However, its use in software design is currently a tedious process of manual multiobjective optimisation. Software designers must build and verify probabilistic models for numerous alternative architectures and instantiations of the system parameters. When successful, they end up with feasible but often suboptimal models. The EvoChecker search-based software engineering approach and tool introduced in our paper employ multiobjective optimisation genetic algorithms to automate this process and considerably improve its outcome. We evaluate EvoChecker for six variants of two software systems from the domains of dynamic power management and foreign exchange trading. These systems are characterised by different types of design parameters and QoS requirements, and their design spaces comprise between 2E+14 and 7.22E+86 relevant alternative designs. Our results provide strong evidence that EvoChecker significantly outperforms the current practice and yields actionable insights for software designers.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"3 1","pages":"319-330"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Search-Based Synthesis of Probabilistic Models for Quality-of-Service Software Engineering (T)\",\"authors\":\"Simos Gerasimou, Giordano Tamburrelli, R. Calinescu\",\"doi\":\"10.1109/ASE.2015.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formal verification of finite-state probabilistic models supports the engineering of software with strict quality-of-service (QoS) requirements. However, its use in software design is currently a tedious process of manual multiobjective optimisation. Software designers must build and verify probabilistic models for numerous alternative architectures and instantiations of the system parameters. When successful, they end up with feasible but often suboptimal models. The EvoChecker search-based software engineering approach and tool introduced in our paper employ multiobjective optimisation genetic algorithms to automate this process and considerably improve its outcome. We evaluate EvoChecker for six variants of two software systems from the domains of dynamic power management and foreign exchange trading. These systems are characterised by different types of design parameters and QoS requirements, and their design spaces comprise between 2E+14 and 7.22E+86 relevant alternative designs. Our results provide strong evidence that EvoChecker significantly outperforms the current practice and yields actionable insights for software designers.\",\"PeriodicalId\":6586,\"journal\":{\"name\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"3 1\",\"pages\":\"319-330\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2015.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

有限状态概率模型的形式化验证支持具有严格服务质量(QoS)要求的软件工程。然而,它在软件设计中的应用目前是一个繁琐的人工多目标优化过程。软件设计人员必须为许多可选择的体系结构和系统参数的实例建立和验证概率模型。即使成功了,他们最终也会得到可行但往往不是最优的模型。本文介绍的基于EvoChecker搜索的软件工程方法和工具采用多目标优化遗传算法来实现这一过程的自动化,并大大改善了其结果。我们对来自动态电源管理和外汇交易领域的两个软件系统的六个变体进行了EvoChecker评估。这些系统的特点是不同类型的设计参数和QoS要求,它们的设计空间包括2E+14和7.22E+86之间的相关替代设计。我们的研究结果提供了强有力的证据,证明EvoChecker显著优于当前的实践,并为软件设计师提供了可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Search-Based Synthesis of Probabilistic Models for Quality-of-Service Software Engineering (T)
The formal verification of finite-state probabilistic models supports the engineering of software with strict quality-of-service (QoS) requirements. However, its use in software design is currently a tedious process of manual multiobjective optimisation. Software designers must build and verify probabilistic models for numerous alternative architectures and instantiations of the system parameters. When successful, they end up with feasible but often suboptimal models. The EvoChecker search-based software engineering approach and tool introduced in our paper employ multiobjective optimisation genetic algorithms to automate this process and considerably improve its outcome. We evaluate EvoChecker for six variants of two software systems from the domains of dynamic power management and foreign exchange trading. These systems are characterised by different types of design parameters and QoS requirements, and their design spaces comprise between 2E+14 and 7.22E+86 relevant alternative designs. Our results provide strong evidence that EvoChecker significantly outperforms the current practice and yields actionable insights for software designers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T) Refactorings for Android Asynchronous Programming Study and Refactoring of Android Asynchronous Programming (T) The iMPAcT Tool: Testing UI Patterns on Mobile Applications Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1