{"title":"微光学太阳能聚光和下一代原型","authors":"J. Karp, E. Tremblay, J. Ford","doi":"10.1109/PVSC.2010.5616788","DOIUrl":null,"url":null,"abstract":"We recently proposed a micro-optic solar concentrator using a two-dimensional array of small-aperture lenses focusing into a planar slab waveguide. By placing mirrors at each lens focus, light collected by the lens array reflects into a common slab waveguide at angles which guide by total internal reflection. Coupled sunlight propagates within the slab until reaching a photovoltaic cell mounted along the edge(s). Simulations of this geometry reveal designs with 89% and 81.9% optical efficiency at 100x and 300x geometric concentrations respectively. The micro-optic concentrator was previously fabricated as a proof-of-concept, but exhibited poor performance due to lens aberrations. Here, we present a 2nd-generation system using a better-suited lens array and achieve >52% measured efficiency. We also discuss performance tradeoffs associated with micro-optic concentration and explore secondary coupler designs as a means to increase both efficiency and concentration.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"102 1","pages":"000493-000497"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Micro-optic solar concentration and next-generation prototypes\",\"authors\":\"J. Karp, E. Tremblay, J. Ford\",\"doi\":\"10.1109/PVSC.2010.5616788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We recently proposed a micro-optic solar concentrator using a two-dimensional array of small-aperture lenses focusing into a planar slab waveguide. By placing mirrors at each lens focus, light collected by the lens array reflects into a common slab waveguide at angles which guide by total internal reflection. Coupled sunlight propagates within the slab until reaching a photovoltaic cell mounted along the edge(s). Simulations of this geometry reveal designs with 89% and 81.9% optical efficiency at 100x and 300x geometric concentrations respectively. The micro-optic concentrator was previously fabricated as a proof-of-concept, but exhibited poor performance due to lens aberrations. Here, we present a 2nd-generation system using a better-suited lens array and achieve >52% measured efficiency. We also discuss performance tradeoffs associated with micro-optic concentration and explore secondary coupler designs as a means to increase both efficiency and concentration.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"102 1\",\"pages\":\"000493-000497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5616788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5616788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micro-optic solar concentration and next-generation prototypes
We recently proposed a micro-optic solar concentrator using a two-dimensional array of small-aperture lenses focusing into a planar slab waveguide. By placing mirrors at each lens focus, light collected by the lens array reflects into a common slab waveguide at angles which guide by total internal reflection. Coupled sunlight propagates within the slab until reaching a photovoltaic cell mounted along the edge(s). Simulations of this geometry reveal designs with 89% and 81.9% optical efficiency at 100x and 300x geometric concentrations respectively. The micro-optic concentrator was previously fabricated as a proof-of-concept, but exhibited poor performance due to lens aberrations. Here, we present a 2nd-generation system using a better-suited lens array and achieve >52% measured efficiency. We also discuss performance tradeoffs associated with micro-optic concentration and explore secondary coupler designs as a means to increase both efficiency and concentration.