ASM对青藏高原卷云形成和性质的影响

Qianshan He, Xiangdong Zheng, Jian Li, Wei Gao, Yanyu Wang, T. Cheng, J. Pu, Jie Liu, LI Chengcai
{"title":"ASM对青藏高原卷云形成和性质的影响","authors":"Qianshan He, Xiangdong Zheng, Jian Li, Wei Gao, Yanyu Wang, T. Cheng, J. Pu, Jie Liu, LI Chengcai","doi":"10.1080/16000889.2019.1577070","DOIUrl":null,"url":null,"abstract":"Abstract Cirrus clouds play a significant role in the Earth’s energy balance and in the hydrological cycle of the atmosphere. Here, a high-performance Micro Pulse Lidar was continuously used to investigate cirrus cloud formation and characteristics at Ali (32.50°N, 80.08°E; 4279 m), in the western Tibetan Plateau from 25 July to 23 September 2016, a time frame that spanned the prevalence and degeneration period of the Asian summer monsoon (ASM). The cirrus clouds frequently occurred with sharp fluctuations in the vertical distribution from 8 to 14 km above ground level (AGL) during the ASM period. In contrast, cirrus clouds were remarkably reduced and consistently existed near 10 km in September, when the ASM began subsiding due to the lack of a driving force that triggers ice formation. Approximately half of the cirrus clouds were caused by deep convective activity during the ASM period, which held one-third of total cirrus clouds during the whole measurement period. These anvil cirrus clouds have a liquid origin and are characterised by optically thicker clouds with Cloud Optical Depth values greater than 0.2, high depolarisation ratios and high lidar ratios. These observations indicate that, in agreement with other studies at mid-latitudes and in the Arctic, liquid origin cirrus could be associated with thicker, larger and more complex nonspherical ice crystals in comparison to in situ formed cirrus. Cold perturbations were responsible for the formation and evolution of the remaining two-thirds of cirrus clouds. These clouds were mostly associated with in situ formation of ice crystals, in the slow updrafts in the tropical transition layer over the Tibetan Plateau.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"241 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The role of ASM on the formation and properties of cirrus clouds over the Tibetan Plateau\",\"authors\":\"Qianshan He, Xiangdong Zheng, Jian Li, Wei Gao, Yanyu Wang, T. Cheng, J. Pu, Jie Liu, LI Chengcai\",\"doi\":\"10.1080/16000889.2019.1577070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cirrus clouds play a significant role in the Earth’s energy balance and in the hydrological cycle of the atmosphere. Here, a high-performance Micro Pulse Lidar was continuously used to investigate cirrus cloud formation and characteristics at Ali (32.50°N, 80.08°E; 4279 m), in the western Tibetan Plateau from 25 July to 23 September 2016, a time frame that spanned the prevalence and degeneration period of the Asian summer monsoon (ASM). The cirrus clouds frequently occurred with sharp fluctuations in the vertical distribution from 8 to 14 km above ground level (AGL) during the ASM period. In contrast, cirrus clouds were remarkably reduced and consistently existed near 10 km in September, when the ASM began subsiding due to the lack of a driving force that triggers ice formation. Approximately half of the cirrus clouds were caused by deep convective activity during the ASM period, which held one-third of total cirrus clouds during the whole measurement period. These anvil cirrus clouds have a liquid origin and are characterised by optically thicker clouds with Cloud Optical Depth values greater than 0.2, high depolarisation ratios and high lidar ratios. These observations indicate that, in agreement with other studies at mid-latitudes and in the Arctic, liquid origin cirrus could be associated with thicker, larger and more complex nonspherical ice crystals in comparison to in situ formed cirrus. Cold perturbations were responsible for the formation and evolution of the remaining two-thirds of cirrus clouds. These clouds were mostly associated with in situ formation of ice crystals, in the slow updrafts in the tropical transition layer over the Tibetan Plateau.\",\"PeriodicalId\":22320,\"journal\":{\"name\":\"Tellus B: Chemical and Physical Meteorology\",\"volume\":\"241 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus B: Chemical and Physical Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16000889.2019.1577070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus B: Chemical and Physical Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16000889.2019.1577070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

卷云在地球能量平衡和大气水文循环中起着重要作用。在这里,使用高性能微脉冲激光雷达连续研究阿里(32.50°N, 80.08°E;2016年7月25日至9月23日,青藏高原西部海拔4279米,这一时间段跨越了亚洲夏季风(ASM)的盛行期和退化期。在ASM期间,卷云在离地8 ~ 14 km的垂直分布上频繁出现剧烈波动。相比之下,9月份,由于缺乏触发冰形成的驱动力,大西洋暖气区开始下沉,卷云明显减少,并持续存在于10公里附近。在整个测量期间,大约一半的卷云是由深对流活动引起的,深对流活动占整个测量期间卷云总量的三分之一。这些砧状卷云的起源是液体,其特征是云层较厚,云光学深度值大于0.2,高去极化比和高激光雷达比。这些观测结果表明,与中纬度地区和北极地区的其他研究结果一致,与原位形成的卷云相比,液态起源的卷云可能与更厚、更大、更复杂的非球形冰晶有关。冷扰动是其余三分之二卷云形成和演化的原因。这些云主要与青藏高原上空热带过渡层缓慢上升气流中的原位冰晶形成有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of ASM on the formation and properties of cirrus clouds over the Tibetan Plateau
Abstract Cirrus clouds play a significant role in the Earth’s energy balance and in the hydrological cycle of the atmosphere. Here, a high-performance Micro Pulse Lidar was continuously used to investigate cirrus cloud formation and characteristics at Ali (32.50°N, 80.08°E; 4279 m), in the western Tibetan Plateau from 25 July to 23 September 2016, a time frame that spanned the prevalence and degeneration period of the Asian summer monsoon (ASM). The cirrus clouds frequently occurred with sharp fluctuations in the vertical distribution from 8 to 14 km above ground level (AGL) during the ASM period. In contrast, cirrus clouds were remarkably reduced and consistently existed near 10 km in September, when the ASM began subsiding due to the lack of a driving force that triggers ice formation. Approximately half of the cirrus clouds were caused by deep convective activity during the ASM period, which held one-third of total cirrus clouds during the whole measurement period. These anvil cirrus clouds have a liquid origin and are characterised by optically thicker clouds with Cloud Optical Depth values greater than 0.2, high depolarisation ratios and high lidar ratios. These observations indicate that, in agreement with other studies at mid-latitudes and in the Arctic, liquid origin cirrus could be associated with thicker, larger and more complex nonspherical ice crystals in comparison to in situ formed cirrus. Cold perturbations were responsible for the formation and evolution of the remaining two-thirds of cirrus clouds. These clouds were mostly associated with in situ formation of ice crystals, in the slow updrafts in the tropical transition layer over the Tibetan Plateau.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach to Investigating the Relative Importance of Meteorological and Aerosol-Related Parameters in Determining Cloud Microphysical Properties Dimensionless Parameterizations of Air-Sea CO2 Gas Transfer Velocity on Surface Waves Transport of Mineral Dust Into the Arctic in Two Reanalysis Datasets of Atmospheric Composition The Climatic Role of Interactive Leaf Phenology in the Vegetation-Atmosphere System of Radiative-Convective Equilibrium Storm-Resolving Simulations Tropical and Boreal Forest – Atmosphere Interactions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1