超声辅助反胶束法制备纳米银及其对耐甲氧西林金黄色葡萄球菌的抑菌作用

Sima Sedrizadeh-Bami, A. Kariminik, M. Ranjbar
{"title":"超声辅助反胶束法制备纳米银及其对耐甲氧西林金黄色葡萄球菌的抑菌作用","authors":"Sima Sedrizadeh-Bami, A. Kariminik, M. Ranjbar","doi":"10.34172/AJCMI.2020.22","DOIUrl":null,"url":null,"abstract":"Background: Serious infections are associated with methicillin-resistant Staphylococcus aureus (MRSA) bacteria and this can lead to many deaths in the world. The aim of the present study was to evaluate the antibacterial effect of silver nanoparticles (AgNPs) against MRSA isolates from clinical samples. Methods: Ag nanoparticles were synthesized by ultrasound-assisted reverse micelles method. The as-prepared Ag nanoparticles were characterized by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial effect of AgNPs was investigated using agar well diffusion assay and minimum inhibitory concentration (MIC) was determined. Results: The XRD studies showed that pure Ag nanoparticles have been produced after calcination. Synthesized AgNPs showed favorable effects on the bacteria used. MIC and minimum bactericidal concentration (MBC) values were determined to be 0.015 and 0.07 mg/mL, respectively. All MRSA isolates were susceptible to AgNPs. In contrast, they showed high resistance to multiple classes of antibiotics. Conclusions: AgNPs had high inhibitory activity against MRSA; therefore, they can be proposed as an alternative or adjuvant to antibiotics for the treatment of MRSA infections. Further investigations are required to assess the safety and efficacy of AgNPs in the body.","PeriodicalId":8689,"journal":{"name":"Avicenna Journal of Clinical Microbiology and Infection","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and Characterization of Silver Nanoparticles with Ultrasound-Assisted Reverse Micelles Method and Their Antibacterial Effects on Methicillin-Resistant Staphylococcus aureus Isolates\",\"authors\":\"Sima Sedrizadeh-Bami, A. Kariminik, M. Ranjbar\",\"doi\":\"10.34172/AJCMI.2020.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Serious infections are associated with methicillin-resistant Staphylococcus aureus (MRSA) bacteria and this can lead to many deaths in the world. The aim of the present study was to evaluate the antibacterial effect of silver nanoparticles (AgNPs) against MRSA isolates from clinical samples. Methods: Ag nanoparticles were synthesized by ultrasound-assisted reverse micelles method. The as-prepared Ag nanoparticles were characterized by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial effect of AgNPs was investigated using agar well diffusion assay and minimum inhibitory concentration (MIC) was determined. Results: The XRD studies showed that pure Ag nanoparticles have been produced after calcination. Synthesized AgNPs showed favorable effects on the bacteria used. MIC and minimum bactericidal concentration (MBC) values were determined to be 0.015 and 0.07 mg/mL, respectively. All MRSA isolates were susceptible to AgNPs. In contrast, they showed high resistance to multiple classes of antibiotics. Conclusions: AgNPs had high inhibitory activity against MRSA; therefore, they can be proposed as an alternative or adjuvant to antibiotics for the treatment of MRSA infections. Further investigations are required to assess the safety and efficacy of AgNPs in the body.\",\"PeriodicalId\":8689,\"journal\":{\"name\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Clinical Microbiology and Infection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/AJCMI.2020.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Clinical Microbiology and Infection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/AJCMI.2020.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:严重感染与耐甲氧西林金黄色葡萄球菌(MRSA)细菌有关,这可能导致世界上许多人死亡。本研究的目的是评价银纳米颗粒(AgNPs)对临床样品中MRSA分离株的抗菌作用。方法:采用超声辅助反胶束法制备银纳米颗粒。采用x射线衍射(XRD)和扫描电镜(SEM)对制备的银纳米颗粒进行了表征。采用琼脂孔扩散法研究AgNPs的抑菌效果,确定最低抑菌浓度(MIC)。结果:XRD研究表明,经煅烧后制备出了纯净的银纳米颗粒。合成的AgNPs对所用细菌有良好的作用。测定其MIC值为0.015 mg/mL,最小杀菌浓度为0.07 mg/mL。所有MRSA分离株均对AgNPs敏感。相比之下,它们对多种抗生素表现出高度耐药性。结论:AgNPs对MRSA具有较高的抑制活性;因此,它们可以作为抗生素的替代或辅助治疗MRSA感染。需要进一步的研究来评估AgNPs在体内的安全性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of Silver Nanoparticles with Ultrasound-Assisted Reverse Micelles Method and Their Antibacterial Effects on Methicillin-Resistant Staphylococcus aureus Isolates
Background: Serious infections are associated with methicillin-resistant Staphylococcus aureus (MRSA) bacteria and this can lead to many deaths in the world. The aim of the present study was to evaluate the antibacterial effect of silver nanoparticles (AgNPs) against MRSA isolates from clinical samples. Methods: Ag nanoparticles were synthesized by ultrasound-assisted reverse micelles method. The as-prepared Ag nanoparticles were characterized by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial effect of AgNPs was investigated using agar well diffusion assay and minimum inhibitory concentration (MIC) was determined. Results: The XRD studies showed that pure Ag nanoparticles have been produced after calcination. Synthesized AgNPs showed favorable effects on the bacteria used. MIC and minimum bactericidal concentration (MBC) values were determined to be 0.015 and 0.07 mg/mL, respectively. All MRSA isolates were susceptible to AgNPs. In contrast, they showed high resistance to multiple classes of antibiotics. Conclusions: AgNPs had high inhibitory activity against MRSA; therefore, they can be proposed as an alternative or adjuvant to antibiotics for the treatment of MRSA infections. Further investigations are required to assess the safety and efficacy of AgNPs in the body.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Detection of Microsporidia in Cattle in Jahrom, Iran Molecular Detection of Hospital-Acquired Methicillin-Resistant Staphylococcusaureus Isolated From Teaching Hospitals in Damascus, Syria The Molecular Investigation of the mecA Gene and Antibiotic Susceptibility Pattern of Staphylococcus aureus and Staphylococcus epidermidis Isolated from Patients with Immune System Disorders at Omid Hospital, Isfahan, Iran Antimicrobial and Anti-pathogenic Activity of New Naphtho [1,2,4] Triazol-Thiadiazin Derivatives Genotypic Investigation of Antibiotic Resistant blaOXA-4 Gene in Clinical Isolates of Pseudomonas aeruginosa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1