Lisa Wu, Orestis Polychroniou, R. J. Barker, Martha A. Kim, K. A. Ross
{"title":"硬件和软件范围划分的能量分析","authors":"Lisa Wu, Orestis Polychroniou, R. J. Barker, Martha A. Kim, K. A. Ross","doi":"10.1145/2638550","DOIUrl":null,"url":null,"abstract":"Data partitioning is a critical operation for manipulating large datasets because it subdivides tasks into pieces that are more amenable to efficient processing. It is often the limiting factor in database performance and represents a significant fraction of the overall runtime of large data queries. This article measures the performance and energy of state-of-the-art software partitioners, and describes and evaluates a hardware range partitioner that further improves efficiency.\n The software implementation is broken into two phases, allowing separate analysis of the partition function computation and data shuffling costs. Although range partitioning is commonly thought to be more expensive than simpler strategies such as hash partitioning, our measurements indicate that careful data movement and optimization of the partition function can allow it to approach the throughput and energy consumption of hash or radix partitioning.\n For further acceleration, we describe a hardware range partitioner, or HARP, a streaming framework that offers a seamless execution environment for this and other streaming accelerators, and a detailed analysis of a 32nm physical design that matches the throughput of four to eight software threads while consuming just 6.9% of the area and 4.3% of the power of a Xeon core in the same technology generation.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"63 1","pages":"8:1-8:24"},"PeriodicalIF":2.0000,"publicationDate":"2014-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy Analysis of Hardware and Software Range Partitioning\",\"authors\":\"Lisa Wu, Orestis Polychroniou, R. J. Barker, Martha A. Kim, K. A. Ross\",\"doi\":\"10.1145/2638550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data partitioning is a critical operation for manipulating large datasets because it subdivides tasks into pieces that are more amenable to efficient processing. It is often the limiting factor in database performance and represents a significant fraction of the overall runtime of large data queries. This article measures the performance and energy of state-of-the-art software partitioners, and describes and evaluates a hardware range partitioner that further improves efficiency.\\n The software implementation is broken into two phases, allowing separate analysis of the partition function computation and data shuffling costs. Although range partitioning is commonly thought to be more expensive than simpler strategies such as hash partitioning, our measurements indicate that careful data movement and optimization of the partition function can allow it to approach the throughput and energy consumption of hash or radix partitioning.\\n For further acceleration, we describe a hardware range partitioner, or HARP, a streaming framework that offers a seamless execution environment for this and other streaming accelerators, and a detailed analysis of a 32nm physical design that matches the throughput of four to eight software threads while consuming just 6.9% of the area and 4.3% of the power of a Xeon core in the same technology generation.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"63 1\",\"pages\":\"8:1-8:24\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2014-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2638550\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2638550","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Energy Analysis of Hardware and Software Range Partitioning
Data partitioning is a critical operation for manipulating large datasets because it subdivides tasks into pieces that are more amenable to efficient processing. It is often the limiting factor in database performance and represents a significant fraction of the overall runtime of large data queries. This article measures the performance and energy of state-of-the-art software partitioners, and describes and evaluates a hardware range partitioner that further improves efficiency.
The software implementation is broken into two phases, allowing separate analysis of the partition function computation and data shuffling costs. Although range partitioning is commonly thought to be more expensive than simpler strategies such as hash partitioning, our measurements indicate that careful data movement and optimization of the partition function can allow it to approach the throughput and energy consumption of hash or radix partitioning.
For further acceleration, we describe a hardware range partitioner, or HARP, a streaming framework that offers a seamless execution environment for this and other streaming accelerators, and a detailed analysis of a 32nm physical design that matches the throughput of four to eight software threads while consuming just 6.9% of the area and 4.3% of the power of a Xeon core in the same technology generation.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.