Xianxiang Yu, G. Cui, Zhenghong Zhang, Lin Zhou, Jing Yang, L. Kong
{"title":"基于收敛保证的ADPM框架的二次优化离散相位波形设计","authors":"Xianxiang Yu, G. Cui, Zhenghong Zhang, Lin Zhou, Jing Yang, L. Kong","doi":"10.1109/SAM48682.2020.9104287","DOIUrl":null,"url":null,"abstract":"This paper considers a quadratic optimization problem in radar discrete-phase waveform design under similarity and constant modulus constraints. A computationally efficient iterative algorithm based on the Alternating Direction Penalty Method (ADPM) framework is proposed. In each iteration, it converts the considered problem into two subproblems with closed-form solutions via an introduced auxiliary variable, while locally increasing the penalty factor involved in the ADPM framework. The proposed algorithm is ensured to converge for any initialization under some mild conditions and avoids the non-convergence problem of the Alternating Direction Method of Multipliers (ADMM) when handling the NP-hard problems. Finally, numerical simulations demonstrate that the proposed algorithm can outperform their counterparts by providing better objective values.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"48 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete-Phase Waveform Design to Quadratic Optimization via an ADPM Framework with Convergence Guarantee\",\"authors\":\"Xianxiang Yu, G. Cui, Zhenghong Zhang, Lin Zhou, Jing Yang, L. Kong\",\"doi\":\"10.1109/SAM48682.2020.9104287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a quadratic optimization problem in radar discrete-phase waveform design under similarity and constant modulus constraints. A computationally efficient iterative algorithm based on the Alternating Direction Penalty Method (ADPM) framework is proposed. In each iteration, it converts the considered problem into two subproblems with closed-form solutions via an introduced auxiliary variable, while locally increasing the penalty factor involved in the ADPM framework. The proposed algorithm is ensured to converge for any initialization under some mild conditions and avoids the non-convergence problem of the Alternating Direction Method of Multipliers (ADMM) when handling the NP-hard problems. Finally, numerical simulations demonstrate that the proposed algorithm can outperform their counterparts by providing better objective values.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"48 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete-Phase Waveform Design to Quadratic Optimization via an ADPM Framework with Convergence Guarantee
This paper considers a quadratic optimization problem in radar discrete-phase waveform design under similarity and constant modulus constraints. A computationally efficient iterative algorithm based on the Alternating Direction Penalty Method (ADPM) framework is proposed. In each iteration, it converts the considered problem into two subproblems with closed-form solutions via an introduced auxiliary variable, while locally increasing the penalty factor involved in the ADPM framework. The proposed algorithm is ensured to converge for any initialization under some mild conditions and avoids the non-convergence problem of the Alternating Direction Method of Multipliers (ADMM) when handling the NP-hard problems. Finally, numerical simulations demonstrate that the proposed algorithm can outperform their counterparts by providing better objective values.