Lucia Mazzapioda, A. Tsurumaki, Graziano Di Donato, Henry Adenusi, M. Navarra, S. Passerini
{"title":"准固态电解质——稳定锂离子的策略|固态锂金属电池中无机固体电解质界面","authors":"Lucia Mazzapioda, A. Tsurumaki, Graziano Di Donato, Henry Adenusi, M. Navarra, S. Passerini","doi":"10.20517/energymater.2023.03","DOIUrl":null,"url":null,"abstract":"Solid-state batteries (SSBs) based on inorganic solid electrolytes (ISEs) are considered promising candidates for enhancing the energy density and the safety of next-generation rechargeable lithium batteries. However, their practical application is frequently hampered by the high resistance arising at the Li metal anode/ISE interface. Herein, a review of the conventional solid-state electrolytes (SSEs) the recent research on quasi-solid-state battery (QSSB) approaches to overcome the issues of the state-of-the-art SSBs is reported. The feasibility of ionic liquid (IL)-based interlayers to improve ISE/Li metal wetting and enhance charge transfer at solid electrolyte interfaces with both positive and lithium metal electrodes is presented together with a novel generation of IL-containing quasi-solid-state-electrolytes (QSSEs), offering favourable features. The opportunities and challenges of QSSE for the development of high energy and high safety quasi-solid-state lithium metal batteries (QSSLMBs) are also discussed.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries\",\"authors\":\"Lucia Mazzapioda, A. Tsurumaki, Graziano Di Donato, Henry Adenusi, M. Navarra, S. Passerini\",\"doi\":\"10.20517/energymater.2023.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state batteries (SSBs) based on inorganic solid electrolytes (ISEs) are considered promising candidates for enhancing the energy density and the safety of next-generation rechargeable lithium batteries. However, their practical application is frequently hampered by the high resistance arising at the Li metal anode/ISE interface. Herein, a review of the conventional solid-state electrolytes (SSEs) the recent research on quasi-solid-state battery (QSSB) approaches to overcome the issues of the state-of-the-art SSBs is reported. The feasibility of ionic liquid (IL)-based interlayers to improve ISE/Li metal wetting and enhance charge transfer at solid electrolyte interfaces with both positive and lithium metal electrodes is presented together with a novel generation of IL-containing quasi-solid-state-electrolytes (QSSEs), offering favourable features. The opportunities and challenges of QSSE for the development of high energy and high safety quasi-solid-state lithium metal batteries (QSSLMBs) are also discussed.\",\"PeriodicalId\":21863,\"journal\":{\"name\":\"Solar Energy Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries
Solid-state batteries (SSBs) based on inorganic solid electrolytes (ISEs) are considered promising candidates for enhancing the energy density and the safety of next-generation rechargeable lithium batteries. However, their practical application is frequently hampered by the high resistance arising at the Li metal anode/ISE interface. Herein, a review of the conventional solid-state electrolytes (SSEs) the recent research on quasi-solid-state battery (QSSB) approaches to overcome the issues of the state-of-the-art SSBs is reported. The feasibility of ionic liquid (IL)-based interlayers to improve ISE/Li metal wetting and enhance charge transfer at solid electrolyte interfaces with both positive and lithium metal electrodes is presented together with a novel generation of IL-containing quasi-solid-state-electrolytes (QSSEs), offering favourable features. The opportunities and challenges of QSSE for the development of high energy and high safety quasi-solid-state lithium metal batteries (QSSLMBs) are also discussed.