基于Aspen HYSYS的胺溶液对天然气酸性气体吸附的建模与仿真

Victoria Kamnetochi Ikpeze, J. Owolabi, I. I. Olateju, A. Giwa
{"title":"基于Aspen HYSYS的胺溶液对天然气酸性气体吸附的建模与仿真","authors":"Victoria Kamnetochi Ikpeze, J. Owolabi, I. I. Olateju, A. Giwa","doi":"10.2118/207183-ms","DOIUrl":null,"url":null,"abstract":"\n This work has been carried out to model and simulate a typical acid gas absorption process using Aspen HYSYS process simulator. The chemical components involved in the process development were water, methane, ethane, propane, higher alkanes, carbon dioxide, hydrogen sulphide, nitrogen and amines: monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA). The fluid package selected for the simulation before entering the simulation environment was Acid Gas – Chemical Solvents. In the simulation environment, the model was developed by picking an absorber from the Model Palette, placing it and assigning the input and the output streams involved before inputting the parameters required for model convergence. The carbon dioxide-rich feed gas was made to enter the absorber at the bottom inlet stream while the lean amine stream entered at the top inlet and showered down on the uprising gas thereby trapping the carbon dioxide molecules within the gas. The top product from the absorber was the treated gas while the amine solution and the trapped carbon dioxide left the absorber as the bottom product. Different simulations were run to investigate the performance of the amines under the same operating conditions. It was discovered that, of all the four amine solvents considered in this work for the removal of carbon dioxide by chemical absorption, MEA had the highest efficiency but would require more dehydration because it had the highest water content. DEA was also found to scrub the carbon dioxide down to acceptable levels. However, TEA and MDEA barely scrubbed any carbon dioxide under these conditions, as their carbon dioxide compositions were found to be unacceptable. The analyses of the results obtained from the simulations indicated that Aspen HYSYS can be used to study the process of acid gas absorption successfully.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and Simulation of Acid Gas Absorption from Natural Gas by Amine Solution Using Aspen HYSYS\",\"authors\":\"Victoria Kamnetochi Ikpeze, J. Owolabi, I. I. Olateju, A. Giwa\",\"doi\":\"10.2118/207183-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work has been carried out to model and simulate a typical acid gas absorption process using Aspen HYSYS process simulator. The chemical components involved in the process development were water, methane, ethane, propane, higher alkanes, carbon dioxide, hydrogen sulphide, nitrogen and amines: monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA). The fluid package selected for the simulation before entering the simulation environment was Acid Gas – Chemical Solvents. In the simulation environment, the model was developed by picking an absorber from the Model Palette, placing it and assigning the input and the output streams involved before inputting the parameters required for model convergence. The carbon dioxide-rich feed gas was made to enter the absorber at the bottom inlet stream while the lean amine stream entered at the top inlet and showered down on the uprising gas thereby trapping the carbon dioxide molecules within the gas. The top product from the absorber was the treated gas while the amine solution and the trapped carbon dioxide left the absorber as the bottom product. Different simulations were run to investigate the performance of the amines under the same operating conditions. It was discovered that, of all the four amine solvents considered in this work for the removal of carbon dioxide by chemical absorption, MEA had the highest efficiency but would require more dehydration because it had the highest water content. DEA was also found to scrub the carbon dioxide down to acceptable levels. However, TEA and MDEA barely scrubbed any carbon dioxide under these conditions, as their carbon dioxide compositions were found to be unacceptable. The analyses of the results obtained from the simulations indicated that Aspen HYSYS can be used to study the process of acid gas absorption successfully.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207183-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207183-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用Aspen HYSYS过程模拟器对典型的酸性气体吸收过程进行了建模和仿真。该工艺开发涉及的化学成分有水、甲烷、乙烷、丙烷、高级烷烃、二氧化碳、硫化氢、氮和胺:单乙醇胺(MEA)、二乙醇胺(DEA)、三乙醇胺(TEA)和甲基二乙醇胺(MDEA)。进入模拟环境前选择的模拟流体包为酸性气体-化学溶剂。在仿真环境中,在输入模型收敛所需的参数之前,通过从模型调色板中选择一个吸收器,将其放置并分配所涉及的输入和输出流来开发模型。富含二氧化碳的原料气从底部入口流进入吸收器,而贫胺流从顶部入口进入,并向上升气体倾盆而下,从而捕获气体中的二氧化碳分子。从吸收塔出来的顶部产物是处理后的气体,而胺溶液和捕获的二氧化碳作为底部产物离开吸收塔。在相同的操作条件下,进行了不同的模拟,研究了胺类化合物的性能。研究发现,在本研究中考虑的四种胺溶剂中,通过化学吸收去除二氧化碳的MEA效率最高,但由于其含水量最高,需要更多的脱水。缉毒局也被发现将二氧化碳降低到可接受的水平。然而,在这些条件下,TEA和MDEA几乎没有洗涤任何二氧化碳,因为它们的二氧化碳成分被发现是不可接受的。对模拟结果的分析表明,HYSYS可以成功地用于研究酸性气体的吸收过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and Simulation of Acid Gas Absorption from Natural Gas by Amine Solution Using Aspen HYSYS
This work has been carried out to model and simulate a typical acid gas absorption process using Aspen HYSYS process simulator. The chemical components involved in the process development were water, methane, ethane, propane, higher alkanes, carbon dioxide, hydrogen sulphide, nitrogen and amines: monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA). The fluid package selected for the simulation before entering the simulation environment was Acid Gas – Chemical Solvents. In the simulation environment, the model was developed by picking an absorber from the Model Palette, placing it and assigning the input and the output streams involved before inputting the parameters required for model convergence. The carbon dioxide-rich feed gas was made to enter the absorber at the bottom inlet stream while the lean amine stream entered at the top inlet and showered down on the uprising gas thereby trapping the carbon dioxide molecules within the gas. The top product from the absorber was the treated gas while the amine solution and the trapped carbon dioxide left the absorber as the bottom product. Different simulations were run to investigate the performance of the amines under the same operating conditions. It was discovered that, of all the four amine solvents considered in this work for the removal of carbon dioxide by chemical absorption, MEA had the highest efficiency but would require more dehydration because it had the highest water content. DEA was also found to scrub the carbon dioxide down to acceptable levels. However, TEA and MDEA barely scrubbed any carbon dioxide under these conditions, as their carbon dioxide compositions were found to be unacceptable. The analyses of the results obtained from the simulations indicated that Aspen HYSYS can be used to study the process of acid gas absorption successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Production and Performance Evaluation of Biodetergents as an Alternative to Conventional Drilling Detergent Comparative Evaluation of Artificial Intelligence Models for Drilling Rate of Penetration Prediction The Limitation of Reservoir Saturation Logging Tool in a Case of a Deeper Reservoir Flow into a Shallower Reservoir Within the Same Wellbore Surrogate-Based Analysis of Chemical Enhanced Oil Recovery – A Comparative Analysis of Machine Learning Model Performance Understanding the Impacts of Backpressure & Risk Analysis of Different Gas Hydrate Blockage Scenarios on the Integrity of Subsea Flowlines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1