利用Arduino Uno监测和控制温室水培系统中独立光伏供电的pH水平和植物营养

L. Kurniawan, Amirullah Amirullah
{"title":"利用Arduino Uno监测和控制温室水培系统中独立光伏供电的pH水平和植物营养","authors":"L. Kurniawan, Amirullah Amirullah","doi":"10.26418/ELKHA.V13I1.45657","DOIUrl":null,"url":null,"abstract":"This paper aims to implement the prototype model to monitor and control the pH levels and nutrition plant (electrical conductivity-EC) supplied by a standalone photovoltaic (PV) module-connected battery (Lithium-Ion) on the greenhouse hydroponic systems. The pH and EC sensors are connected to the Arduino Uno circuit as a relay control to drive four pumps, i.e. the water flow pump, EC pump, pH up pump, and pH down pump. The greenhouse function to control pests and the impact of environmental non-uniformity caused by variation of wind speed, temperature, or sunlight so that hydroponic plants can grow in an appropriate environment. The Arduino Uno circuit with a 20 × 4 liquid crystal display (LCD) order four relays to monitor and control the four pumps of the greenhouse hydroponic system based on the coding which has been programmed previously. The prototype model is able to monitor and control the pH of hydroponic plant water at the level between 6-7 using a pH-up and pH-down sensor. This model is also able to monitor and control nutrition plant water over 1 mS/cm using an EC sensor. Finally, the proposed prototype is able to monitor and control EC and pH level to regulate plant growth in the greenhouse hydroponic system normally and in real-time.","PeriodicalId":32754,"journal":{"name":"Elkha Jurnal Teknik Elektro","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monitoring and Controlling of pH Levels and Plant Nutrition Supplied by Standalone Photovoltaic in a Greenhouse Hydroponic System using Arduino Uno\",\"authors\":\"L. Kurniawan, Amirullah Amirullah\",\"doi\":\"10.26418/ELKHA.V13I1.45657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to implement the prototype model to monitor and control the pH levels and nutrition plant (electrical conductivity-EC) supplied by a standalone photovoltaic (PV) module-connected battery (Lithium-Ion) on the greenhouse hydroponic systems. The pH and EC sensors are connected to the Arduino Uno circuit as a relay control to drive four pumps, i.e. the water flow pump, EC pump, pH up pump, and pH down pump. The greenhouse function to control pests and the impact of environmental non-uniformity caused by variation of wind speed, temperature, or sunlight so that hydroponic plants can grow in an appropriate environment. The Arduino Uno circuit with a 20 × 4 liquid crystal display (LCD) order four relays to monitor and control the four pumps of the greenhouse hydroponic system based on the coding which has been programmed previously. The prototype model is able to monitor and control the pH of hydroponic plant water at the level between 6-7 using a pH-up and pH-down sensor. This model is also able to monitor and control nutrition plant water over 1 mS/cm using an EC sensor. Finally, the proposed prototype is able to monitor and control EC and pH level to regulate plant growth in the greenhouse hydroponic system normally and in real-time.\",\"PeriodicalId\":32754,\"journal\":{\"name\":\"Elkha Jurnal Teknik Elektro\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elkha Jurnal Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/ELKHA.V13I1.45657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elkha Jurnal Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/ELKHA.V13I1.45657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在实现由独立光伏(PV)模块连接电池(锂离子电池)在温室水培系统上提供的pH水平和营养植物(电导率- ec)的监测和控制原型模型。pH和EC传感器连接到Arduino Uno电路,作为继电器控制驱动四个泵,即水流泵,EC泵,pH上升泵和pH下降泵。温室的功能是控制害虫和风速、温度、光照变化引起的环境不均匀性的影响,使水培植物在适宜的环境中生长。采用20x4液晶显示器(LCD)的Arduino Uno电路,根据之前编写的编码,命令4个继电器对温室水培系统的4个泵进行监测和控制。原型模型能够使用pH-up和pH-down传感器监测和控制水培植物水的pH值在6-7之间。该模型还能够使用EC传感器监测和控制营养植物水分超过1 mS/cm。最后,该样机能够监测和控制EC和pH水平,以正常、实时地调节温室水培系统中的植物生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring and Controlling of pH Levels and Plant Nutrition Supplied by Standalone Photovoltaic in a Greenhouse Hydroponic System using Arduino Uno
This paper aims to implement the prototype model to monitor and control the pH levels and nutrition plant (electrical conductivity-EC) supplied by a standalone photovoltaic (PV) module-connected battery (Lithium-Ion) on the greenhouse hydroponic systems. The pH and EC sensors are connected to the Arduino Uno circuit as a relay control to drive four pumps, i.e. the water flow pump, EC pump, pH up pump, and pH down pump. The greenhouse function to control pests and the impact of environmental non-uniformity caused by variation of wind speed, temperature, or sunlight so that hydroponic plants can grow in an appropriate environment. The Arduino Uno circuit with a 20 × 4 liquid crystal display (LCD) order four relays to monitor and control the four pumps of the greenhouse hydroponic system based on the coding which has been programmed previously. The prototype model is able to monitor and control the pH of hydroponic plant water at the level between 6-7 using a pH-up and pH-down sensor. This model is also able to monitor and control nutrition plant water over 1 mS/cm using an EC sensor. Finally, the proposed prototype is able to monitor and control EC and pH level to regulate plant growth in the greenhouse hydroponic system normally and in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23
审稿时长
10 weeks
期刊最新文献
Multi-oscillations Detection for Process Variables Based on K-Nearest Neighbor Interference Analysis Between 5G System and Fixed Satellite Service in the 28 GHz Band Heading control for quadruped stair climbing based on PD controller for the KRSRI competition Optimization Objective Function Corona Discharge Acoustic Using Fuzzy c-Means (FcM ) Temperature and Humidity Control System for Pole-Mounted Metering Circuit Breaker with Artificial Neural Network Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1