{"title":"利用机器学习和大数据技术预测作物产量的方法","authors":"K. Palanivel, Chellammal Surianarayanan","doi":"10.34218/IJCET.10.3.2019.013","DOIUrl":null,"url":null,"abstract":"Agriculture is the primary source of livelihood which forms the backbone of our country. Current challenges of water shortages, uncontrolled cost due to demand-supply, and weather uncertainty necessitate farmers to be equipped with smart farming. In particular, low yield of crops due to uncertain climatic changes, poor irrigation facilities, reduction in soil fertility and traditional farming techniques need to be addressed. Machine learning is one such technique employed to predict crop yield in agriculture. Various machine learning techniques such as prediction, classification, regression and clustering are utilized to forecast crop yield. Artificial neural networks, support vector machines, linear and logistic regression, decision trees, Naive Bayes are some of the algorithms used to implement prediction. However, the selection of the appropriate algorithm from the pool of available algorithms imposes challenge to the researcher with respect to the chosen crop. In this paper, an investigation has been performed on how various machine learning algorithms are useful in prediction of crop yield. An approach has been proposed for prediction of crop yield using machine learning techniques in big data computing paradigm.","PeriodicalId":38492,"journal":{"name":"International Journal of Computer Aided Engineering and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"AN APPROACH FOR PREDICTION OF CROP YIELD USING MACHINE LEARNING AND BIG DATA TECHNIQUES\",\"authors\":\"K. Palanivel, Chellammal Surianarayanan\",\"doi\":\"10.34218/IJCET.10.3.2019.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agriculture is the primary source of livelihood which forms the backbone of our country. Current challenges of water shortages, uncontrolled cost due to demand-supply, and weather uncertainty necessitate farmers to be equipped with smart farming. In particular, low yield of crops due to uncertain climatic changes, poor irrigation facilities, reduction in soil fertility and traditional farming techniques need to be addressed. Machine learning is one such technique employed to predict crop yield in agriculture. Various machine learning techniques such as prediction, classification, regression and clustering are utilized to forecast crop yield. Artificial neural networks, support vector machines, linear and logistic regression, decision trees, Naive Bayes are some of the algorithms used to implement prediction. However, the selection of the appropriate algorithm from the pool of available algorithms imposes challenge to the researcher with respect to the chosen crop. In this paper, an investigation has been performed on how various machine learning algorithms are useful in prediction of crop yield. An approach has been proposed for prediction of crop yield using machine learning techniques in big data computing paradigm.\",\"PeriodicalId\":38492,\"journal\":{\"name\":\"International Journal of Computer Aided Engineering and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Aided Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34218/IJCET.10.3.2019.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Aided Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34218/IJCET.10.3.2019.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
AN APPROACH FOR PREDICTION OF CROP YIELD USING MACHINE LEARNING AND BIG DATA TECHNIQUES
Agriculture is the primary source of livelihood which forms the backbone of our country. Current challenges of water shortages, uncontrolled cost due to demand-supply, and weather uncertainty necessitate farmers to be equipped with smart farming. In particular, low yield of crops due to uncertain climatic changes, poor irrigation facilities, reduction in soil fertility and traditional farming techniques need to be addressed. Machine learning is one such technique employed to predict crop yield in agriculture. Various machine learning techniques such as prediction, classification, regression and clustering are utilized to forecast crop yield. Artificial neural networks, support vector machines, linear and logistic regression, decision trees, Naive Bayes are some of the algorithms used to implement prediction. However, the selection of the appropriate algorithm from the pool of available algorithms imposes challenge to the researcher with respect to the chosen crop. In this paper, an investigation has been performed on how various machine learning algorithms are useful in prediction of crop yield. An approach has been proposed for prediction of crop yield using machine learning techniques in big data computing paradigm.
期刊介绍:
IJCAET is a journal of new knowledge, reporting research and applications which highlight the opportunities and limitations of computer aided engineering and technology in today''s lifecycle-oriented, knowledge-based era of production. Contributions that deal with both academic research and industrial practices are included. IJCAET is designed to be a multi-disciplinary, fully refereed and international journal.