Mamoru Takahashi, T. Fujita, Takahito Yanagi, R. Suzuki, O. Kamiya
{"title":"基体表面粗糙度对钛基牙种植体火焰燃烧合成金刚石膜的影响","authors":"Mamoru Takahashi, T. Fujita, Takahito Yanagi, R. Suzuki, O. Kamiya","doi":"10.32732/jma.2022.11.1.17","DOIUrl":null,"url":null,"abstract":"The flame combustion method enables the synthesis of diamonds via acetylene-oxygen gas flame combustion in ambient air, and this method has various advantages over other methods. However, most diamond films synthesized by this method delaminate because of thermal stress during cooling. Titanium (Ti) has recently been utilized as a dental implant in the dental industry. In this study, to improve the strength, wear resistance, and biocompatibility of dental implant surfaces, diamond films were synthesized on a Ti substrate, a dental implant material, by the flame combustion method. Moreover, to obtain high-quality diamond films and achieve good adhesion on the Ti substrate, as a pretreatment of the substrate to prevent delamination, scratch processing, in which a substrate is ground with emery paper in one direction, was performed to roughen the surface. The surface roughness of the Ti substrates was varied by scratching with emery paper of #180, #400, and #1500 grain sizes. According to these results, diamond films were synthesized on the Ti substrate surface by flame combustion. The surface morphology of the synthesized films could be altered by varying the scratching process using emery paper. Delamination of the synthesized films during the scratching process with emery paper #180 (Case A) and #400 (Case B) grain size was completely prevented. However, delamination occurred during the scratching process with a grain size of emery paper #1500 (Case C). To investigate the reason for this result, the surface roughness of the pretreated Ti substrate was observed, and it affected the surface roughness of pretreated Ti substrate affected the surface morphology and delamination of the synthesized diamond films.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Substrate Surface Roughness on Synthesized Diamond Films by Flame Combustion on Ti Substrate for Dental Implants\",\"authors\":\"Mamoru Takahashi, T. Fujita, Takahito Yanagi, R. Suzuki, O. Kamiya\",\"doi\":\"10.32732/jma.2022.11.1.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flame combustion method enables the synthesis of diamonds via acetylene-oxygen gas flame combustion in ambient air, and this method has various advantages over other methods. However, most diamond films synthesized by this method delaminate because of thermal stress during cooling. Titanium (Ti) has recently been utilized as a dental implant in the dental industry. In this study, to improve the strength, wear resistance, and biocompatibility of dental implant surfaces, diamond films were synthesized on a Ti substrate, a dental implant material, by the flame combustion method. Moreover, to obtain high-quality diamond films and achieve good adhesion on the Ti substrate, as a pretreatment of the substrate to prevent delamination, scratch processing, in which a substrate is ground with emery paper in one direction, was performed to roughen the surface. The surface roughness of the Ti substrates was varied by scratching with emery paper of #180, #400, and #1500 grain sizes. According to these results, diamond films were synthesized on the Ti substrate surface by flame combustion. The surface morphology of the synthesized films could be altered by varying the scratching process using emery paper. Delamination of the synthesized films during the scratching process with emery paper #180 (Case A) and #400 (Case B) grain size was completely prevented. However, delamination occurred during the scratching process with a grain size of emery paper #1500 (Case C). To investigate the reason for this result, the surface roughness of the pretreated Ti substrate was observed, and it affected the surface roughness of pretreated Ti substrate affected the surface morphology and delamination of the synthesized diamond films.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32732/jma.2022.11.1.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/jma.2022.11.1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Substrate Surface Roughness on Synthesized Diamond Films by Flame Combustion on Ti Substrate for Dental Implants
The flame combustion method enables the synthesis of diamonds via acetylene-oxygen gas flame combustion in ambient air, and this method has various advantages over other methods. However, most diamond films synthesized by this method delaminate because of thermal stress during cooling. Titanium (Ti) has recently been utilized as a dental implant in the dental industry. In this study, to improve the strength, wear resistance, and biocompatibility of dental implant surfaces, diamond films were synthesized on a Ti substrate, a dental implant material, by the flame combustion method. Moreover, to obtain high-quality diamond films and achieve good adhesion on the Ti substrate, as a pretreatment of the substrate to prevent delamination, scratch processing, in which a substrate is ground with emery paper in one direction, was performed to roughen the surface. The surface roughness of the Ti substrates was varied by scratching with emery paper of #180, #400, and #1500 grain sizes. According to these results, diamond films were synthesized on the Ti substrate surface by flame combustion. The surface morphology of the synthesized films could be altered by varying the scratching process using emery paper. Delamination of the synthesized films during the scratching process with emery paper #180 (Case A) and #400 (Case B) grain size was completely prevented. However, delamination occurred during the scratching process with a grain size of emery paper #1500 (Case C). To investigate the reason for this result, the surface roughness of the pretreated Ti substrate was observed, and it affected the surface roughness of pretreated Ti substrate affected the surface morphology and delamination of the synthesized diamond films.