在序批式反应器(SBR)中使用氧化还原介质加强橙G脱色

M. Mehrdad, B. Bonakdarpour, B. Nasernejad
{"title":"在序批式反应器(SBR)中使用氧化还原介质加强橙G脱色","authors":"M. Mehrdad, B. Bonakdarpour, B. Nasernejad","doi":"10.15866/IREBIC.V5I3.5975","DOIUrl":null,"url":null,"abstract":"The declorization of the acid azo dye, Orange G (Acid Orange 10) in an anaerobic phase of the anaerobic-aerobic sequencing batch reactor feed by synthetic wastewater was investigated. Moreover, the impact of a redox mediator (AQS) on the color removal was studied. it is for the first time that the decolorization of Orange G is investigated in SBR system with activated sludge. The redox mediator was really effective for cleavage the azo band and increased the efficiency of the reactor. When 20 mg/l of Orange G was added to the sysnthetic wastewater, the decolorization efficiency was 50 % without the addition of AQS. The decolorization efficiency increased up to 75% when the small quantity of AQS, 0.05nM, was added to the wastewater. The high COD removal of synthetic dye wastewater was observed during the operation. The COD removal was always in the range of 80-90 %.","PeriodicalId":14377,"journal":{"name":"International Review of Biophysical Chemistry","volume":"73 1","pages":"70-73"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Redox Mediators for Enhancing the Decolourisation of Orange G in a Sequencing Batch Reactor (SBR)\",\"authors\":\"M. Mehrdad, B. Bonakdarpour, B. Nasernejad\",\"doi\":\"10.15866/IREBIC.V5I3.5975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The declorization of the acid azo dye, Orange G (Acid Orange 10) in an anaerobic phase of the anaerobic-aerobic sequencing batch reactor feed by synthetic wastewater was investigated. Moreover, the impact of a redox mediator (AQS) on the color removal was studied. it is for the first time that the decolorization of Orange G is investigated in SBR system with activated sludge. The redox mediator was really effective for cleavage the azo band and increased the efficiency of the reactor. When 20 mg/l of Orange G was added to the sysnthetic wastewater, the decolorization efficiency was 50 % without the addition of AQS. The decolorization efficiency increased up to 75% when the small quantity of AQS, 0.05nM, was added to the wastewater. The high COD removal of synthetic dye wastewater was observed during the operation. The COD removal was always in the range of 80-90 %.\",\"PeriodicalId\":14377,\"journal\":{\"name\":\"International Review of Biophysical Chemistry\",\"volume\":\"73 1\",\"pages\":\"70-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Biophysical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREBIC.V5I3.5975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Biophysical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREBIC.V5I3.5975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以合成废水为原料,研究了厌氧-好氧序批式反应器厌氧相中酸性偶氮染料橙G (acid Orange 10)的脱色效果。此外,还研究了氧化还原介质(AQS)对脱色效果的影响。首次在SBR系统中研究了活性污泥对橙G的脱色效果。氧化还原介质对偶氮带的裂解非常有效,提高了反应器的效率。在合成废水中添加20 mg/l的橙G,在不添加AQS的情况下,脱色率为50%。在废水中加入少量0.05nM的AQS,脱色效率可达75%。运行过程中观察到合成染料废水COD的高去除率。COD去除率在80 ~ 90%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Redox Mediators for Enhancing the Decolourisation of Orange G in a Sequencing Batch Reactor (SBR)
The declorization of the acid azo dye, Orange G (Acid Orange 10) in an anaerobic phase of the anaerobic-aerobic sequencing batch reactor feed by synthetic wastewater was investigated. Moreover, the impact of a redox mediator (AQS) on the color removal was studied. it is for the first time that the decolorization of Orange G is investigated in SBR system with activated sludge. The redox mediator was really effective for cleavage the azo band and increased the efficiency of the reactor. When 20 mg/l of Orange G was added to the sysnthetic wastewater, the decolorization efficiency was 50 % without the addition of AQS. The decolorization efficiency increased up to 75% when the small quantity of AQS, 0.05nM, was added to the wastewater. The high COD removal of synthetic dye wastewater was observed during the operation. The COD removal was always in the range of 80-90 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biocoagulants for Water and Waste Water Purification: a Review Optimisation of Poly(γ-Glutamic Acid) Production by Bacillus velezensis NRRL B – 23189 in Liquid Fermentation with Molasses as the Carbon Source without Addition of Glutamic Acid Effects of Transesterification Parameters on the Biodiesel Produced from Crude Groundnut Oil Effect of Filling Kinetic of Sequencing Batch Reactor on the Poultry Wastewater Treatment Technology and Engineering of Biodiesel Production: a Comparative Study between Microalgae and Other Non-Photosynthetic Oleaginous Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1