S. Vyas, Ting-Ju Chen, Jay Woodward, Vinayak R. Krishnamurthy
{"title":"反思-表达-转换:青年设计师基于语音的迭代数字设计研究","authors":"S. Vyas, Ting-Ju Chen, Jay Woodward, Vinayak R. Krishnamurthy","doi":"10.1115/1.4062230","DOIUrl":null,"url":null,"abstract":"\n We investigate speech-based input as a means to enable reflective thinking for younger individuals (middle - and high-school students) during design iterations. Verbalization offers a unique way to externalize ideas in early design and could therefore lead to new pathways for exploration and iteration, especially for K-12 students who possess the creative potential but are not technically trained in the design process. Interactive design systems, however, by-and-large utilize sketching, multi-touch, and gestural inputs. As a result, (1) there is little know-how regarding how to operationalize verbal inputs as a meaningful way to facilitate idea exploration and (2) there is little fundamental understanding of the underlying cognitive mechanisms for iteration through verbal communication. We take the initial steps towards these gaps by first designing and implementing the ShapOrator interface that takes verbal descriptions of geometric parameters (shape, size, instances) in a semi-natural language form and determines the appropriate transformations to a given design artifact modeled as a shape assembly. Using ShapOrator as our experimental setup we conducted an in-depth observational study on 10 middle - and high-school students tasked with designing spaceships. Our study revealed that participants were able to create a variety of designs while associating functional and topical contexts to their spaceships throughout the design iteration process.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflect-Express-Transform: Investigating Speech-Based Iterative Digital Design for Young Designers\",\"authors\":\"S. Vyas, Ting-Ju Chen, Jay Woodward, Vinayak R. Krishnamurthy\",\"doi\":\"10.1115/1.4062230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We investigate speech-based input as a means to enable reflective thinking for younger individuals (middle - and high-school students) during design iterations. Verbalization offers a unique way to externalize ideas in early design and could therefore lead to new pathways for exploration and iteration, especially for K-12 students who possess the creative potential but are not technically trained in the design process. Interactive design systems, however, by-and-large utilize sketching, multi-touch, and gestural inputs. As a result, (1) there is little know-how regarding how to operationalize verbal inputs as a meaningful way to facilitate idea exploration and (2) there is little fundamental understanding of the underlying cognitive mechanisms for iteration through verbal communication. We take the initial steps towards these gaps by first designing and implementing the ShapOrator interface that takes verbal descriptions of geometric parameters (shape, size, instances) in a semi-natural language form and determines the appropriate transformations to a given design artifact modeled as a shape assembly. Using ShapOrator as our experimental setup we conducted an in-depth observational study on 10 middle - and high-school students tasked with designing spaceships. Our study revealed that participants were able to create a variety of designs while associating functional and topical contexts to their spaceships throughout the design iteration process.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062230\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062230","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Reflect-Express-Transform: Investigating Speech-Based Iterative Digital Design for Young Designers
We investigate speech-based input as a means to enable reflective thinking for younger individuals (middle - and high-school students) during design iterations. Verbalization offers a unique way to externalize ideas in early design and could therefore lead to new pathways for exploration and iteration, especially for K-12 students who possess the creative potential but are not technically trained in the design process. Interactive design systems, however, by-and-large utilize sketching, multi-touch, and gestural inputs. As a result, (1) there is little know-how regarding how to operationalize verbal inputs as a meaningful way to facilitate idea exploration and (2) there is little fundamental understanding of the underlying cognitive mechanisms for iteration through verbal communication. We take the initial steps towards these gaps by first designing and implementing the ShapOrator interface that takes verbal descriptions of geometric parameters (shape, size, instances) in a semi-natural language form and determines the appropriate transformations to a given design artifact modeled as a shape assembly. Using ShapOrator as our experimental setup we conducted an in-depth observational study on 10 middle - and high-school students tasked with designing spaceships. Our study revealed that participants were able to create a variety of designs while associating functional and topical contexts to their spaceships throughout the design iteration process.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping