{"title":"移动分子通信中生物纳米机器的协同信号和定向迁移","authors":"Shinya Ishiyama, T. Nakano, Yutaka Okaie, Takahiro Hara, K. Harumoto","doi":"10.1145/3411295.3411299","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a molecular communication system where bio-nanomachines cooperate in signaling and move directionally toward a target area in the environment. In the proposed system, bio-nanomachines, upon entering a target area, release signal molecules in pulses, and nearby bio-nanomachines respond to the signal molecules by further releasing signal molecules in pulses. When bio-nanomachines are distributed around a target area, signal molecules propagate over long distance as a traveling wave in the environment, where the direction of a traveling wave encodes the location information about a target area. Bio-nanomachines outside a target area implement the relay-and-stop mechanism; they relay signal molecules and stop for a short period of time in order to bias their motion toward a target area based on the direction of a traveling wave. Numerical results show that the proposed system outperforms existing systems in terms of the number of bio-nanomachines that move closer to target areas. Application of the proposed system is anticipated to improve the performance of cooperative drug delivery using bio-nanomachines.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cooperative signaling and directed migration of bio-nanomachines in mobile molecular communication\",\"authors\":\"Shinya Ishiyama, T. Nakano, Yutaka Okaie, Takahiro Hara, K. Harumoto\",\"doi\":\"10.1145/3411295.3411299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a molecular communication system where bio-nanomachines cooperate in signaling and move directionally toward a target area in the environment. In the proposed system, bio-nanomachines, upon entering a target area, release signal molecules in pulses, and nearby bio-nanomachines respond to the signal molecules by further releasing signal molecules in pulses. When bio-nanomachines are distributed around a target area, signal molecules propagate over long distance as a traveling wave in the environment, where the direction of a traveling wave encodes the location information about a target area. Bio-nanomachines outside a target area implement the relay-and-stop mechanism; they relay signal molecules and stop for a short period of time in order to bias their motion toward a target area based on the direction of a traveling wave. Numerical results show that the proposed system outperforms existing systems in terms of the number of bio-nanomachines that move closer to target areas. Application of the proposed system is anticipated to improve the performance of cooperative drug delivery using bio-nanomachines.\",\"PeriodicalId\":93611,\"journal\":{\"name\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411295.3411299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种分子通信系统,其中生物纳米机器在信号传递中相互合作,并向环境中的目标区域定向移动。在所提出的系统中,生物纳米机器在进入靶区域后以脉冲方式释放信号分子,附近的生物纳米机器通过进一步以脉冲方式释放信号分子来响应信号分子。当生物纳米机器分布在目标区域周围时,信号分子作为行波在环境中长距离传播,其中行波的方向编码了目标区域的位置信息。目标区域外的生物纳米机器实现了继电器和停止机制;它们传递信号分子,并在短时间内停止,以便根据行波的方向将它们的运动偏向目标区域。数值结果表明,所提出的系统在靠近目标区域的生物纳米机器数量方面优于现有系统。该系统的应用有望提高生物纳米机器协同给药的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative signaling and directed migration of bio-nanomachines in mobile molecular communication
In this paper, we propose a molecular communication system where bio-nanomachines cooperate in signaling and move directionally toward a target area in the environment. In the proposed system, bio-nanomachines, upon entering a target area, release signal molecules in pulses, and nearby bio-nanomachines respond to the signal molecules by further releasing signal molecules in pulses. When bio-nanomachines are distributed around a target area, signal molecules propagate over long distance as a traveling wave in the environment, where the direction of a traveling wave encodes the location information about a target area. Bio-nanomachines outside a target area implement the relay-and-stop mechanism; they relay signal molecules and stop for a short period of time in order to bias their motion toward a target area based on the direction of a traveling wave. Numerical results show that the proposed system outperforms existing systems in terms of the number of bio-nanomachines that move closer to target areas. Application of the proposed system is anticipated to improve the performance of cooperative drug delivery using bio-nanomachines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward localization in terahertz-operating energy harvesting software-defined metamaterials: context analysis MEHLISSA A molecular communications framework for understanding the floral transition Powering next-generation industry 4.0 by a self-learning and low-power neuromorphic system A testbed and simulation framework for air-based molecular communication using fluorescein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1